Treatment Planning System Commissioning and QA: *Incorporating the entire planning process (E2E Testing)*

Sasa Mutic, Ph.D.
Conflict of interest statement

- TreatSafely.org – partner and cofounder
- Radialogica – shareholder, cofounder, and CTO
- Varian – licensing, service, grants, honoraria
- Modus – licensing
- ViewRay – licensing, service, grants, honoraria
Overview

- What is commissioning
- Treatment planning as a part of broader process
- End to End (E2E) testing
- Automation and Standardization
The term commissioning comes from shipbuilding. A commissioned ship is one deemed ready for service. Before being awarded this title, however, a ship must pass several milestones. Equipment is installed and tested, problems are identified and corrected, and the prospective crew is extensively trained. A commissioned ship is one whose materials, systems, and staff have successfully completed a thorough quality assurance process.

http://cx.lbl.gov/definition.html
Modern RT - Complexity

- Recent sophistication – large fraction of modern treatment practices developed in the past ten years
- High technical complexity
- Multiple systems (software and hardware)
- Limited to non-existent guidance and regulations
- High pressure
- Increased potential for catastrophic failures

“To error is human. To really foul things up requires a computer.”
The function of systems engineering is to guide the engineering of complex systems. It is founded on a belief that individual components of an organization are dependent on each other. It is very much about employing common sense in design of operations. A set of tools for more effective management of interconnected components.
• Applicable to systems with the following attributes:
 – Complex
 – Engineered
 – Advanced technology
 – High risk
 – High cost

Modern RT
Systems Engineering

Systems Design
- Quality systems
- Human factors
- FMEA (This is coming up in TG-100)

Systems Analysis
- Modeling and simulation
- Enterprise management
- Financial engineering and risk analysis
- Knowledge discovery

Systems Control
- SPC
- Scheduling
The upcoming TG100 report predominantly relies on:

- a. SPC (2%)
- b. ILS (1%)
- c. QC/QA (10%)
- d. FMEA (87%)
- e. RPC (1%)
The upcoming TG100 report predominantly relies on:
(a) SPC
(b) ILS
(c) QC/QA
(d) FMEA
(e) RPC

Answer: d) FMEA

“It is difficult for engineers to change human nature and therefore, instead of trying to persuade people not to make errors, we should accept people as we find them and try to remove opportunities for error by changing work situation.”

An engineers view of human error - Trevor Kletz
An outline for use of Systems Engineering for improvement of national health care system

“We often call this arrangement a “health care system” even though it was never created as a system and has never performed as a system.”

National Academy of Engineering and Institute of Medicine, 2005
Organizational Culture

• “Shared **values** (what is important) and **beliefs** (how things work) that interact with an organization’s structures and control systems to produce behavioural norms (the way we do things around here).” Uttal, B., Fortune. 17 October 1983.
Errors in Radiation Therapy

- Staff and public exposures
- Misadministrations
 - Underdose
 - Overdose
 - Anatomical misses
- Magnitude
 - From few percent to lethal doses
 - From couple of millimeters to complete misses
- Regulatory
 - Nuclear Regulatory Commission
 - Errors that do not necessarily affect patients but have regulatory/legal consequences
- Sources
 - Staff
 - Software
 - Hardware
- Random
 - Affect one to few patients
- Systematic
 - Affect hundreds of patients
 - Potentially in a short period
Error spectrum

- **Publicized** – One side of the spectrum, usually large dosimetric errors – NY Times Articles

- **Semi-publicized** – RPC data
 - Approximately 20% of participating institutions fail the credentialing test at 7% or 4mm*
 - Approximately 30% fail at 5%*

- **Unpublicized/unnoted** – everyday occurrences
 - “Small” dosimetric errors and geographic misses
 - Suboptimal treatment plans (contouring and dose distributions)
 - Care coordination issues
 - Unnecessary treatment delays

Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom

Andrea Molineu, Nadia Hernandez, Trang Nguyen, Geoffrey Ibbott, and David Followill
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

(Received 10 April 2012; revised 15 November 2012; accepted for publication 7 December 2012; published 8 January 2013)

Purpose: This study was performed to report and analyze the results of the Radiological Physics Center’s head and neck intensity-modulated radiation therapy (IMRT) phantom irradiations done by institutions seeking to be credentialed for participation in clinical trials using intensity modulated radiation therapy.

Methods: The Radiological Physics Center’s anthropomorphic head and neck phantom was sent to institutions seeking to participate in multi-institutional clinical trials. The phantom contained two planning target volume (PTV) structures and an organ at risk (OAR). Thermoluminescent dosimeters (TLD) and film dosimeters were imbedded in the PTV. Institutions were asked to image, plan, and treat the phantom as they would treat a patient. The treatment plan should cover at least 95% of the primary PTV with 6.6 Gy and at least 95% of the secondary PTV with 5.4 Gy. The plan should limit the dose to the OAR to less than 4.5 Gy. The passing criteria were ±7% for the TLD in the PTVs and a distance to agreement of 4 mm in the high dose gradient area between the PTV and the OAR. Pass rates for different delivery types, treatment planning systems (TPS), linear accelerators, and linear accelerator-planning system combinations were compared.

Results: The phantom was irradiated 1139 times by 763 institutions from 2001 through 2011. 929 (81.6%) of the irradiations passed the criteria. 156 (13.7%) irradiations failed only the TLD criteria, 21 (1.8%) failed only the film criteria, and 33 (2.9%) failed both sets of criteria. Only 69% of the irradiations passed a narrowed TLD criterion of ±5%. Varian-Elipse and TomoTherapy-HiArt combinations had the highest pass rates, ranging from 90% to 93%. Varian-Pinnacle, Varian-XiO, Siemens-Pinnacle, and Elekta-Pinnacle combinations had pass rates that ranged from 66% to 81%.

Conclusions: The head and neck phantom is a useful credentialing tool for multi-institutional IMRT clinical trials. The most commonly represented linear accelerator-planning system combinations can all pass the phantom, though some combinations had higher passing percentages than others. Tightening the criteria would significantly reduce the number of institutions passing the credentialing criteria. Causes for failures include incorrect data entered into the TPS, inexact beam modeling, and software and hardware failures. © 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4773309]

Key words: credentialing, clinical trials, IMRT QA, anthropomorphic phantom

• Pass rate at 7%/4mm – 81.6%
• Pass rate at 5% - 69%
• It indicates that the systems which have less local user input have significantly higher pass rates
 – Tomotherapy – no user input
 – Eclipse – Presumably golden beam data or the benefit of automodeling
Comprehensive QA for Radiation Oncology: Report of AAPM Radiation Therapy Committee Task Group 40

Gerald J. Kutsche
Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Lawrence C. Coia
Department of Radiation Oncology, Pennsylvania 19111

Michael Gillin
Radiation Therapy Department,

William F. Hanson
Radiological Physics Center, Dallas Center, Houston, Texas 77030

Steven Sabel
Department of Radiation Oncology, University of Texas, Houston, Texas 77030

Robert J. Morton
Siemens Medical Laboratories, Inc.

Jetinder R. Palta
Department of Radiation Oncology, The Medical University of South Carolina, Charleston, South Carolina

James A. Pardy
Radiation Oncology Division, University of Missouri, Columbia, Missouri 65212

Lawrence E. Reinstein
Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California 91010

Goran K. Svensson
Radiation Therapy Department, Karolinska Institutet, Stockholm, Sweden

Mona Weller
Radiation Oncology, Halsenectar, Sweden

Linda Wingfield
Central Arkansas Radiation Therapy Institute, Little Rock, Arkansas 72205

(Received 25 October 1993; revised 16 February 1994; accepted 31 March 1994)

Task Group 142 report: Quality assurance of medical accelerators

Eric E. Klein (a)
Washington University, St. Louis, Missouri

Joseph Hanley
Hackensack University Medical Center, Hackensack, New Jersey

John Bayouth
University of Iowa, Iowa City, Iowa

Feng-Fang Yin
Duke University, Durham, North Carolina

William Simon
Sun Nuclear Corp., Melbourne, Florida

Sean Dresser
Northside Hospital, Atlanta, Georgia

Christopher Serago
Mayo Clinic, Jacksonville, Florida

Francisco Aquaro
M. D. Anderson Cancer Center, Houston, Texas

Lijun Ma
University of California, San Francisco, California

Bijan Aromand
M. D. Anderson Cancer Center, Houston, Texas

Chihray Liu
University of Florida, Gainesville, Florida

Consultants:

Carlos Sandin
Elekta Oncology, Crawley, United Kingdom

Todd Holmes
Varian Medical Systems, Palo Alto, California

William E. Simon
San Nuclear Corporation, Redondo Beach, California

Timothy C. Zhu
Department of Radiation Oncology, City of Hope, Duarte, California

(Received 24 February 1999; revision accepted 17 February 2000)

Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM

Indra J. Das (a)
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Choo-Wai Cheng
Department of Radiation Oncology, Morristown Memorial Hospital, Morristown, New Jersey 07962

Ronald J. Watts
International Medical Physics Services, San Antonio, Texas 78232

Anders Ahnesjo
Uppsala University and Umea University, Sweden

John Gibbons
Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809

X. Allen Li
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Jessica Lowenstein
Radiological Physics Center, Brookhaven National Laboratory, Upton, New York 11973

Raj K. Mita
Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana

(Received 4 February 2009; published 22 August 2009)

Task Group No. 210 - Conventional LINAC Acceptance Testing

AAPM Members, Affiliates and Non-Member Affiliates - Login for access to additional information

Charge

1. Recommendations for (1) technical specifications that should be included in the purchase contract and (2) consideration of technical aspect of purchase contract. 2. To provide definition of performance specifications for major LINAC subsystems in ATP. 3. To make recommendations on the tests to be performed during the LINAC acceptance testing procedure (ATP), including beam matching and subsequent major repair/upgrades including testing methods that complement vendor-suggested measurements.

Approved Date(s)

Start: 10/4/2010
End: 12/31/2014
RPC tolerance for IMRT head and neck phantom irradiation is:

3% a. 2%/2mm
12% b. 3%/3mm
86% c. 7%/4mm
0% d. 2%
0% e. 2mm
RPC tolerance for IMRT head and neck phantom irradiation is:

(a) 2%/2mm
(b) 3%/3mm
(c) 7%/4mm
(d) 2%
(e) 2mm

Answer: c – 7%/4mm

Ref: Molineu et al, Credentialing results from IMRT irradiations of an anthropomorphic head and neck, Med Phys, 40, 2013.
What are the obstacles

- **Publicized** (Catastrophic)
 - Ultimately a technical limitation

- **Semi-publicized** (Semi-catastrophic)
 - Ultimately a cultural limitation

- **Unpublished/unnoted** – (unknown significance)
 - Technical and cultural limitation
End to End (E2E) Testing

- Designed to identify system dependencies and to ensure that the data integrity is maintained between various system components and (internal and external) systems.

- Two aspects:
 1) A holistic view/test of the overall process and integration
 2) An overall system test rather than testing of multiple individual components (unit tests)
End to End (E2E) Testing

• Where are the ends in RT?
 – For treatment delivery – Simulation orders to delivery record
• Who performs testing?
 – Ideally people responsible for individual tasks
• Is there a need for E2E with closed systems with standard data?
 – True closed systems do not exist. Even if they did exist – user testing still valuable.
End to End (E2E) Testing

- Focus is on system function and not on system capabilities – stressing the system is not the goal
- Demonstration of successful test is important. Do not fail the test and “fix” the problems without repeating the test
- Depending on the novelty of the system, initial failure is expected
Evidence based QM (us as a discipline)

- It is difficult for individual clinics to prioritize their QA/QC/QM activities if the broader field and community is still struggling with what to prioritize
- Prioritization requires data
- Evidence based medicine is everywhere, QA/QC need to embrace the same approach
Example: QA/QC Check Effectiveness

- An analysis of the effectiveness of common QA/QC checks
- IRB between Johns Hopkins University & Washington University
- Both institutions started incident learning systems (ILS) at the same time
- Data:
 - Incident reports: 2007–2011
 - 4,407 reports
 - 292 (7%) “high potential severity”

Common QA/QC checks

- Pre-treatment IMRT QA
- Online CT: check by physician
- Online CT: check by therapist
- EPID dosimetry
- Checklist
- SSD check
- Chart rounds
- In vivo diode measurements
- Timeout by the therapist
- Port films: check by therapist
- Port films: check by physician
- Physician chart review
- Physics weekly chart check
- Therapist chart review
- Physics chart review
Literature Search

- PubMed.org search on:
 - (Quality Assurance) AND (Radiation Therapy) AND
 - (IMRT) Results: 463
 - (Chart Checks) Results: 7
 - (Chart Review) - Results: 34
- An order of magnitude difference

May 2013 Data
How would investors use this data?
1. Transfer patient plan to a QA phantom
 • Dose recalculated (homogeneous) on phantom – any dose calculation errors would not be revealed

2. Perform QA prior to treatment
 • Subsequent data changes/corruption may result in systematic errors for all subsequent patients

3. The volume of data impossible to monitor and verify manually
 • Manual checks do reveal data changes/corruptions, but not reliably

4. The process too laborious with questionable benefits
 • A systematic analysis and redesign demonstrates possibility of a much more robust and automated process
• IHE-RO is an ASTRO initiative that helps to ensure a safe, efficient radiation oncology practice by improving system to system connections

• IHE-RO was only setting standards until recently

• Quality Assurance Plan Veto (QAPV) is an IHE-RO initiative, in which they are proposing the framework called QAPV profile
QAPV checker: Compares RT-plan (DICOM) from TPS and treatment parameters from Linac. If the plan passes the verification, proceed in green direction.

QAPV profile value

- IHE-RO QAPV (plan veto) profile
- Proposal for a software that would validate data sent to treatment machine every day
- Significant departure for IHE-RO as this is proposal of a new product and not simply integration work
- QAPV Cost\Benefit Analysis
 - Do the benefits of the QAPV justify introduction of another device
 - Quantify benefits of QAPV

QAPV profile value

- Varian created a 4DTC emulator with QCR (quality check requestor) functionality
- WU used electronic chart check infrastructure to create a QCP (quality check performer)
- WU used the ILS database to perform FMEA analysis of delivery process with and without QAPV

<table>
<thead>
<tr>
<th>DiICOM RT plan parameter</th>
<th>0</th>
<th>S</th>
<th>D</th>
<th>Without QAPV</th>
<th>With QAPV</th>
<th>Without QAPV</th>
<th>With QAPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Identification Information</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>108</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Plan Identification Information</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>280</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Number of Fractions Planned</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>288</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Number of Beams</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>72</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Beam Dose Specification Point</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Beam Meterset</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>324</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Institution Name</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>189</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>Treatment Machine Name</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>288</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Beam Type</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Radiation Type</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>27</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>High dose technique type</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>144</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Treatment Delivery Type</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Wedges</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>252</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Number of Control Points</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nominal Beam Energy</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>175</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>RT Beam Limiting Device Type</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>200</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Leaf/Jaw Positions</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>168</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Gantry Angle</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>35</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Beam Limiting Device Angle</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Patient Support Angle</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Isocenter Position</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>216</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Cumulative Meterset Weight</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>90</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
The main focus of IHE-RO is:

- **a.** Dosimetric testing (4%)
- **b.** Clinical trials (5%)
- **c.** Institutional credentialing (2%)
- **d.** System integration testing (87%)
- **e.** Maintenance of certification (3%)
The main focus of IHE-RO is:

(a) Dosimetric testing
(b) Clinical trials
(c) Institutional credentialing
(d) System integration testing
(e) Maintenance of certification

Answer: d - System integration testing

Thank you!