

Radiation Oncology UNIVERSITY OF TORONTO

AAPM 57th Annual Meeting | 12-16 July 2015 **TPS Commissioning and QA: A Process Orientation & Application of Control Charts**

DISCLOSURE

Customer, collaborator, licensing:

- Elekta AB, Raysearch Laboratories AB, MODUS Medical Devices
- Leadership position:
 - Cancer Care Ontario

ACKNOWLEDGEMENTS

- Tim Craig, Jean-Pierre Bissonnette, Stephen Breen, David Jaffray, Daniel Letourneau, BeiBei Zhang, Stuart Rose, Gavin Disney,
- Miller MacPherson, Katharina Sixel,
- Jake Van Dyk, Jerry Battista, Benedict Fraas
- Anything I say might be superseded by next two speakers

Objectives

- Introduction & Review
- Acceptance & Commissioning
- Periodic Quality Assurance
- "New" Definition of Quality
- Quality Tools

- Highlight the current reference documents; summarize key aspects
- FOCUS:
 - Configure and assure TPS is ready *clinical integration*.
- Scope does not include:
 - Staff orientation/training
 - Development and documentation of clinical procedures

References

- AAPM TG 53 (Report 62):
 - QA for Clinical Radiotherapy Treatment Planning, Med. Phys. 25 (10) 1998.
- AAPM TG 62 (Report 85)
 - Tissue Inhomogeneity Corrections For Megavoltage Photon Beams (2004)
- IAEA Technical Reports Series No. 430
 - Commissioning and QA of Computerized Planning Systems for Radiation Treatment of Cancer (2004)
- AAPM TG 119:
 - IMRT Commissioning: Multiple institution planning & dosimetry comparisons, Med.Phys. 36 (11) 2009.
 - IMRT planning and QA test data via aapm.org
- IAEA Technical Document 1540
 - Specification and Acceptance Testing of Radiotherapy TPS (2007)
- IAEA Technical Doc. 1583

Commissioning

AAPM Task Group 53

$\[$	Task Group	Торіс	Inception	Completed	Report
	65	Tissue Heterogeneities in Photon Beams		2004	85
	66	CT Simulators		2003	83
	71	MU Calculations		2014	258
	100	QA – Evaluate Needs	2003		
	105	Monte Carlo Clinical Implementation		2007	
	106	Accelerator Commissioning		2008	
	114	MU Calculations (non-IMRT)		2011	
	117	MRI – In SRS Treatment Planning	2005		
	119	IMRT - Commissioning		2009	
	120	IMRT - Tools & Techniques		2011	
	132	Image Registration	2006		
	145	PET - Quantitation	2006		
	155	Dosimetry – Small Fields	2007		
	157	TPS – Monte Carlo Commissioning	2007		
	163	IT - Disaster Preparedness	2007		
	166	Use and QA of Biological Models		2012	
	174	PET - Monitoring	2008		
	189	MRI - DCE			

AAPM TG53 Responsibilities – Vendors, Users

- Specification, Design, Management
 - Best practices, policies e.g. SLA, Security, Redundancy
- Service Contract
- Documentation & Training
- Software validation (safety, QA)

Action Cancer Ontario

- Communication (bugs, risks, feature enhancements)
- Related relationships
 - Vendor
 - IT personnel
 - Administration
 - Therapists/Planners, Physicians

Acceptance

TPS Operation Standards

- Format of displays, units, date & time
- Data limits, transfer
- Saving and archiving data
- Equipment and source model
- Patient model

th th

- Treatment planning
- Dose calculation
- Documentation Treatment plan report

"The consultants recommend that the procedure for acceptance testing of treatment planning systems should be made more similar to that of other equipment used in a radiotherapy department. After installation of a planning system in a hospital, the vendor should perform a series of tests, gether with the user, to demonstrate that the system performs according to its specifications...."

ce ent ns

Commissioning

- Qualified medical physicist readies system for stable & routine clinical use.
- TPS models and interacts with devices used for imaging and treatment.
 - Document & configure geometric, functional information.
 - Collect internally consistent data (CT#, dose distributions)
 - Configure interfaces to devices & ROIS.
- Validate availability and proper function of features (per vendor specifications, clinical requirements).

Commissioning

AAPM Task Group 53

Dosimetric Consistent measurements Data input into the RTP system Dose model parameters Methods for comparison & verification Verify Calculations Absolute dose & plan normalization **Clinical verifications**

Technology Advances Our collective thinking evolves

Many other AAPM Guidelines

Coordinates, Movements & Scales

Machine Characterizatio

- Movements, scales, limits, accessories.
- Allowed mechanical movements, speeds,
- Identification (coding) of machines, moda (linking of TPS, ROIS and Machine).
- Should be understood and configured prior to commissioning dose algorithms -Requires careful verification.
- Effort is often taken for granted.
- Mistakes could cause systematic errors.
- IEC 61217, 60601

Craig, Tim, et al IJROBP 44.4 (1999): 955-966.

Tissue Density Calibration

 For dose computation, derive high-energy radiation interaction properties of materials from CT Images - Hounsfield Units:

$$\mathrm{HU} = 1000 \left(\frac{\mu - \mu_{\mathrm{w}}}{\mu_{\mathrm{w}}} \right)$$

Nohbah A et al, JACMP, 12(3) (2011)

nčer Centre

Images Support Dose Calculations

Figure 2-20 The relative importance of the three major types of gamma-ray interaction. The lines show the values of Z and $h\nu$ for which the two neighboring effects are just equal. (From *The Atomic Nucleus* by R. D. Evans. Copyright 1955 by the McGraw-Hill Book Company. Used with permission.)

cess garet cer Centre

Tissue Density Calibration

140 kVp

Figure 1: Electron Density vs. CT Number at different tube energies.

120 kVp

Error depends on dose gradient, attenuation estimate, path length

$\Delta \mathbf{D} = -\mathbf{S} \Delta \boldsymbol{\mu} \Delta \mathbf{I}$

S - dose gradient $\Delta \mu \Box$ atten. variation $\Delta I -$ spatial extent

Princess Margaret Cancer Centre

With thanks to Robert Weersink, PhD

1.8 Sim 4 1.6 Sim 2 Sim 1 1.4 Electron Density 1.2 1 0.8 0.6 0.4 0.2 0 -1000 -500 0 500 1000 1500 CT Number (HU)

Tissue Density Calibration

- Derived high-energy radiation coefficients may occasionally be in error by 10% (e.g. bone & low kVp)
- The uncertainty in the dose distribution due to these errors is <1% for photon; 2%/2mm for electrons.
- 8% to 10% CT# error leads to less than 1% dose error.
 - Huizenga H. et al, Acta Radiol. Oncol. 24 509-519 (1985)
 - Thomas SJ, BJR. 72 781-786 (1999)
 - Kilby W. et al, PMB 47 1485–1492 (2002)
 - Nohbah A *et al*, JACMP, 12(3) (2011)

Why are CT numbers a good way to estimate radiological properties of tissue?

- A. We get to see inside the patient!
- B. The angular momentum of the dipole distribution is similar.
- C. The power to weight ratio is ideal.
- In water-like materials, attenuation is dominated by the Compton Effect over the pertinent range of photon energies, creating a direct estimate of electron density.
- E. None are true

QUESTION

- Why are CT numbers a good way to estimate radiological properties of tissue?
 - A. We get to see inside the patient!
 - B. The angular momentum of the dipole distribution is similar.
 - C. The power to weight ratio is ideal.
 - D. In water-like materials, attenuation is dominated by the Compton Effect over the pertinent range of photon energies, creating a direct estimate of electron density.
 - E. None are true

Attix, Frank Herbert. *Introduction to radiological physics and radiation dosimetry*. John Wiley & Sons, 2008.

Regarding tolerances for relationship between CT numbers to tissue density, which of the following is TRUE?

- A. It must be monitored closely and carefully
- B. An 8% error in estimating tissue density will cause a 1% dose error
- C. A 1% error in estimating tissue density will cause an 8% dose error
- D. Electron dose distributions are not sensitive to CT numbers
- E. All are true.

QUESTION

- Regarding tolerances for relationship between CT numbers to tissue density, which of the following is TRUE?
 - A. It must be monitored closely and carefully
 - B. An 8% error in estimating tissue density will cause a 1% dose error
 - C. A 1% error in estimating tissue density will cause an 8% dose error
 - D. Electron dose distributions are not sensitive to CT numbers
 - E. All are true.

Kilby W. et al, PMB 47 1485–1492 (2002)

AAPM Task Group 53

Beam Modeling

Parameters

- Head/collimator geometry
- Energy Spectrum
- Fluence profile
- Collimator transmission
- Focal spot (penumbra)
- Extra-focal contribution
- Electron contamination
- Reference Dose Rate
- Measured Output Factors

Machine: NS09 Version: 2007-09-12 13:00:46 Energy: 6MP Tield Size: All Field Sizes		
Version: 2007-09-12 13:00:46 Energy: 6 <i>MV</i> Field Size: All Field Sizes		
Energy: 6MV Field Size: All Field Sizes		
Field Size: All Field Sizes		
neident Fluence		Inc Flu
Arbitrary mofile	See plot	1.088
C (perpendicular to gantry axis) (cm)	0.035	
f' (parallel to gantry axis) (cm)	0.035	
Soussian height (cm)	0.075	
laussian width (ent)	1.9	t /
aw transmission	0.002	F /
ALC transmission	0.00300	0.004 A A A A A Bulling (cm)
Modifiers		0.00 28.28
Modifier scatter factor	0	
Electron Contamination		Energy Spectrum
JaVOff	On	(Energy in MeV)
Max Depth [MAXD] (cm)	3.5	Energy MeV Rel Photons
5C Surface Dose [ECD 10x10] (D/Flu)	0.2	0.10 0.057
Depth Coefficient [K] (1/cm)	2.7	0.20 0.103
Off-axis Coefficient [OAC] (1/rad*2)	20	0.30 0.145
JF	0.16	0.40 0.183
21/D/260	0.001	0.50 0.216
22 (D.F.h.)	2	0.80 0.247
(1/cm)	0.35	1.00 0.334
		1.25 0.365
Spectral Factors		1.50 0.382
Off-axis softening factor	.9	2.00 0.378
		3.00 0.288
Modeling Geometry		4.00 0.166
luence grid resolution (cm)	0.20	5.00 0.067
Anantom Size - Lateral (cm)	50.00	8.00 0.000
hantom Size - Depth (cm)	50.00	Offset(cm)
MLC		0076F
eaf offset calibration	See plot	$F \subset X$
Rounded leaf tip radius (em)	12.2	
fongue and groove width (cm)	0.05	[/ \
Additional interleaf leakage transmission	0.007	
		-10.50 10.50 Leaf Position (cm)
		1.2.6

RTP System 8.0

A Pinnacle³

Adjustment to model parameters to fit non-clinical beams

Verify & Document

Specifying tolerance levels

- TPS calculations, at discrete points, are compared with measured profiles and depth-dose curves.
- TPS will give a reproducible deviation from the measured value at certain points within the beam.
- IAEA TRS430 provides detailed test suite in Chapter 9.
 Typical tolerance levels from AAPM TG53, IAEA TRS430 (examples)

Square field CAX:	1%
MLC penumbra:	3%
Wedge outer beam:	5%
Buildup-region:	30%
3D inhomogeneity CAX.	5%

er Centre

For analysis of agreement between calculations and measurements, consider several regions.

Self-Consistent Measurements

Werner Heisenberg, 1958

Verify & Document

ancer Centre

- Measurements for commissioning & performance of TPS are the baseline for future routine QA.
- Configuration is benchmarked against measurements to characterize capacity to model treatment unit (geometry, dose).
- Uncertainty addresses confidence in the result of measurements; the dispersion of the values that could be observed.
- **Error** is deviation from the expected value.
- Both can be random or systematic.
- Only significant if they exceed a specified tolerance.

Dose Testing – Relative Distribution

Dose Testing – Dose Calibration

Add Reference Calibration and Output Factors by performing MU comparisons on central axis for

		Agreement Between RadCalc and Manual						
			Calculatio	on				
			<1%	<2%	<3%	<4%	<5%	
-	ES07	6 MV	75	96	100	100	100	
		18 MV	84	100	100	100	100	
Test specification	EV06	6 MV	92	98	100	100	100	
rest specification		18 MV	82	99	100	100	100	
Test reference	SV01	6 MV	57	96	100	100	100	
lest reference		6 MV FFF	78	99	100	100	100	
	NA09	6 MV	55	97	98	100	100	
Result		18 MV	64	99	100	100	100	
	Table 9	- Summary	of agree	ment bet	ween Ra	dCalc and	d manual	
Procedure	all bean	n models	•					

calculations for

		Agreemer Calculatio	nt Between	RadCalc a	and Pinnacl	е
		<1%	<2%	<3%	<4%	<5%
ES07	6 MV	63	90	99	100	100
	18 MV	76	99	100	100	100
EV06	6 MV	62	93	99	100	100
	18 MV	61	86	99	100	100
SV01	6 MV	70	97	100	100	100
	6 MV FFF	73	92	100	100	100
NA09	6 MV	35	79	96	99	100
	18 MV	81	94	99	100	100

Table 10 – Summary of agreement between RadCalc and Pinnacle calculations for all beam models

Date

Dose Testing – Irregular Fields

U-shape		Pnt 1			Pnt 2			Pnt 3		
		3cm depth	7cm depth	15 cm depth	3cm depth	7cm depth	15 cm depth	3cm depth	7cm depth	15 cm depth
EV06	6 MV	-1.7	-1.1	-0.9	-1.2	-0.6	-0.4	-2.0	-1.6	-1.8
	18 MV	0.6	-2.1	-1.5	0.6	-1.9	-1.3	1.0	-2.6	-1.8
ES07	6 MV	0.6	0.2	0.5	0.6	0.2	0.5	0.1	-0.7	-0.3
	18 MV	0.1	-0.5	0.1	-0.3	-0.8	-0.2	-0.6	-1.9	-0.6
SV01	6 MV FFF6	-0.1	0.0	0.2	0.5	0.7	1.2	0.2	0.0	-0.1
	MV	0.4	-0.4	-1.3	0.4	0.1	-0.9	0.5	-0.5	-2.0
NA09	6 MV	0.4	0.3	0.3	0.9	0.9	0.7	-0.1	-0.4	-0.6
	18 MV	0.8	0.0	0.1	0.9	0.2	0.1	0.3	-1.0	-0.9

Table 12 - U-Shape irregular field percent agreement in monitor units calculated by RadCalc-and Pinnacle for each geometry and beam model

UHN Princess Margaret Cancer Centre

Detailed description of dosimetric tests are provided by:

QUESTION

- Detailed description of tests are provided by:
 - A. Your Boss.
 - B. Fraas et al, "AAPM Radiation Therapy Committee TG53: Quality assurance program for radiotherapy treatment planning", Med Phys 25,1773-1836 (1998)
 - C. IAEA, "Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer", TRS 430
 - D. All of the Above

Answer is C

- Reference Chapter 9 IAEA Technical Reports Series No. 430
 - Commissioning and QA of Computerized Planning Systems for Radiation Treatment of Cancer (2004)

Routine Quality Control

AAPM TG53 – Report 62 - 5-1. Periodic RTP Process QA Checks

Frequency	Item
Daily	Error logs Hardware/software change logs
Weekly	Digitizer Hardcopy output Computer files Review clinical treatment planning
Monthly	CT data input Problem review Review hardware, software and data files
Annually	Dose Calculations Review digitizer, CT/MRI input, printers, etc. Review BEV/DRR accuracy, CT geometry, density conversions, DVH calculations, data files and other critical data
Variable	Repeat commissioning due to machine changes or software upgrade

http://www.cpqr.ca/wp-content/uploads/2015/04/TPS-2015-02-02.pdf

CPQR Canadian Partnership for Quality Radiotherapy PCQR Partenariat canadien pour

Partenariat canadien pour la qualité en radiothérapie

Hypothesis

 Variation in dosimetric performance within or between groups of patients planned with a common strategy will aid in improvement of dosimetric accuracy and precision.

Theory of Knowledge - PDSA

Deming's Sketch of the Shewhart Cycle for Learning and Improvement - 1985

THE SHEWHART CYCLE

* Act: Adopt the change, or Abandon it. or Run through the cycle again, possibly under different environmental conditions.

Dr. Walter Shewhart Bell Labs, 1930

A "New" Definition od Quality

- Variation is to be expected
- Common or special causes
- Tools to learn from variation
- Goal: On target with minimum variance
- This requires a different way of thinking of our processes.
- It is achieved only when a process displays a reasonable degree of statistical control

UHN

Understanding Variation: Tools

Statistical Process Control

Breen SL, et al Med Phys 35:4417-4425 (2008)

- Statistical techniques to document, correct, and improve process performance.
- A *control chart* monitors variation over time;
 - Compare current process performance with historical performance - based on ~25 samples.
- SPC differs from setting specifications, although it informs process improvement and the ability to meet stated specifications.
- A process is described as "in control" when its performance is predictable in a statistical sense.

SPC Basic Procedure

- Choose an appropriate metric, time period for collection and plotting.
- Choose patient/plan cohort that is reasonably similar.
 - literature suggests need ~25 samples.
- Construct plot and analyze.
- Look for "out of control" events, investigate the cause.
 - Are there valid reason to exclude events?
- Are there systematic differences?

QUESTION

Process capability is a measure of the ability of a process to operate within its specification range. How many samples are needed to establish control limits to monitor IMRT using a control chart?

3%	A. 5
13%	B. 10
71%	C. ~25
9%	D. >100
4%	E. 350

QUESTION

- Process capability is a measure of the ability of a process to operate within its specification range.
- How many samples are needed to establish control limits to monitor IMRT using a control chart?
 - A. 5
 - **B**. 10
 - **C.** ~25
 - D. >100
 - E. 350
- ANSWER: C
 - Breen SL, et al Med Phys 35:4417-4425 (2008)

"Although we have demonstrated the requirement for about 25 measurements to characterize our head and neck IMRT process, there is a need to continue to monitor the process to ensure stability over a longer period of time."

IMRT Process Monitoring

165 high-dose measurements - Head and neck IMRT Pinnacle 7.6c (Sept – Dec, 2005)

Breen SL, Moseley DJ, Zhang B, Sharpe MB. Med Phys 35:4417-4425 (2008)

Process Change

- Old TPS Version
 - Beam modulated as an intensity matrix
 - Secondary conversion to MLC delivery
 - MLC modeled as an "ideal" collimator
- New TPS Version
 - Incorporates physical MLC model
 - Single-focus
 - Curved leaf face
 - transmission
 - "tongue and groove"

IMRT Verification Measurements

Head & Neck Cancers

Breen et al, Med. Phys. Oct 2008

cer Centre

Improved beam model

Improve beam model: verification

Patient-Specific QC

Measured-Calculated Dose Agreement:

Prostate: 91.4% ± 4.1% (25 patients, 175 beams)

(3%/2mm)

Dose Computed on Phantom

Patient-Specific QC

All VMAT - Pelvis Site Groups (GU, GI, GYN) Arc Check - Absolute Dose – 3%/2mm

Patient-Specific QC

Measured-Calculated Dose Agreement:

Prostate: $91.4\% \pm 4.1\%$ (25 patients, 175 beams)

(3%/2mm)

Spine SBRT: 77.1% \pm 9.7% (25 patients, 214 beams)

(3%/2mm)

MapCheck

Why the Difference in Agreement?

Same Accelerator. Same Measurement Device. Beam Model?

Automated Beam Model Optimization

ABMOS

- Concept: Employ clinically relevant (IMRT-like) delivery in the beam modeling process.
- Challenge: Isolate key parameters; manipulate to enhance accuracy & precision of model across IMRTtype beams.
- Approach: Employ automated optimization methods.

Generation of initial parameter values (Random or User-Defined) Controler script In TPS Physics Module Create IMRT beam (1st iteration only) - Set beam model parameter values - Calculate dose map (1st iteration creates n+1 dose maps) Comparison algorithm Dose Comparison with Measurement Cost Function (CF) = 1 – (relative number of diodes satisfying tolerance of %∆D and DTA) Optimization algorithm Generate new set of parameters values (Downhill Simplex Algorithm) False CF_{max} - CF_{min} < T_{tol} Iteration # > Imax False True True **Optimization Termination** - Save best parameters and dose map

UHN

Princess

Margaret

Cancer Centre

User selects the following: - Beam model parameters to be optimized - Maximum number of iterations (I_{max})

- Termination criteria (T_{tol})

User interface

Letourneau-D et al Med. Phys. 37(5) 2110-2120 (2010)

ABMOS Results

ABMOS vs. Previous Model

Measured-Calculated Dose Agreement

	<u>Clinical</u>	<u>ABMOS</u>
Prostate: (25 patients, 175 beams)	91.4% ± 4.1%	98.2% ± 1.6%
Spine SBRT: (25 patients, 214 beams)	77.1% ± 9.7%	96.4% ± 2.8%

Relative pass rate (±SD)	Initial model	Optimized model
Prostate cases ($n=175$ beams)	$91.4\% \pm 4.1\%$	$98.2\% \pm 1.6\%$
%ΔD/DTA: 3%/2 mm (2%/1 mm)	$(73.1\% \pm 6.7\%)$	$(89.4\% \pm 4.9\%)$
Paraspinal cases ($n=214$ beams)	$77.1\% \pm 9.7\%$	$96.4\% \pm 2.8\%$
%ΔD/DTA: 3%/2 mm (2%/1 mm)	$(48.8\% \pm 10.0\%)$	$(77.8\% \pm 7.2\%)$

Letourneau-D et al Med. Phys. 37(5) 2110-2120 (2010)

25 Prostate Cases

Independent dose calculation

A representative point for each field and composite

 $\pm 3\%$? Tolerance $\pm 5\%$?

	Point Nai	ne	IC	RU B					
	Coordinates (X	ζ, Υ, Ζ)	(1.32, -	46.45, 2.	80)				
Patie	Total Dose (cGy)	1	70.9			35		
(T	RTP Calculated Do	ose (cGy)	1	70.4			55		
	Percent Diffe	erence	(0	.3%					
1 Descript					10		IS12		ĺ.
ield IL t: ICRU	Beam Description	Offsets X/Z	SSD / Depth	Point Dose (cGy)	RTP Dose (cGy)	% Diff	$y: \frac{40}{\text{Couch:}}$	0	
Per Treat	Ph2 RPO 200	-0.88 / 3.02	88.91 / 10.37	9.1	9.6	-4.6%	<u></u> Depth: Eff. Depth:	4.10	
ose @ Cal	Ph2 RPO 240	-1.16 / 3.00	84.27 / 15.75	13.2	13.2	0.2%	$\begin{bmatrix} I & ALPO: \\ I & I \end{bmatrix}$	6.89_	ŝ
Sc	Ph2 RAO 280	-0.90 / 2.98	92.71 / 8.07	22.7	22.0	3.4%			
ry x OAI Scatter	Ph2 RAO 320	-0.22 / 2.97	94.90 / 6.29	21.0	21.5	-2.7%	=8.00		
no. Corr Factor	Ph2 ANT 0 X1	0.55 / 2.97	96.01 / 5.06	23.9	24.5	-2.6%		6.69	
Per MU	Ph2 LAO 40	1.08 / 2.99	96.37 / 4.10	17.2	17.4	-1.6%	₽	" +X	
lan MU	Ph2 LAO 80	1.11/3.01	94.40 / 5.27	21.0	20.6	1.7%			
en bil	Ph2 LPO 120	0.61/3.03	87.06 / 11.99	16.9	16.6	1.9%	= 10.00		e
	Ph2 LPO 160	-0.18 / 3.03	85.78 / 13.12	26.0	25.0	4.1%	, Mod Facto	or = 0.211	11

TPS vs 2nd Calculation

Pinnacle v9.2 - Elekta Agility - 6MV - July 2012 - Feb 2015

TPS vs 2nd Calculation, One Beam Model

SUMMARY

- Showed examples of non-dosimetric tests
 - imaging, orientation and scales
- Use of TG53 criteria to assess commissioning
- Implementing routine quality assurance
 - Continuous Quality Improvement
 - Statistic Process Control
 - On Target, minimum variation
- Anticipate several new Reports from AAPM.
- If you "feel good" about patient-specific QC results, reduce your specification and seek improvement!

