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Biological Models in RT
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*Example: Use of radiobiological models in RT

» To properly design studies and assess the data and
uncertainty need to understand:

- What is actually being modeled, under what conditions, and
how this can affect the results.

- Where the uncertainty lies in each step.

- How to properly interpret and analyze the data.
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Introduction

* Fundamental tumor/cell/cancer biology
is becoming a more integral part of
medical physics.

- More widespread soft tissue / functional imaging

- Broader use of biological models in treatment
planning.

- Increased push for evidence based decision
making.

* Physics and biology groups are segregated.

» Physicists need to better understand biology
studies and their sources of uncertainty.

Example: (Simple) LO Model

* “Simple” linear quadratic (LQ) model:

» S = surviving fraction of cells for a single fraction of

radiation (D)
* LQ model forms the basis for BED, EQD, some TCP /
NTCP models among others.

» S does not apply to patient, animal, or tissue survival —
only cells.

* If your assay/experiment does not directly measure cell
survival, it is either not applicable or there is additional
uncertainty.

- LQ model cell kill believed to be related to double
strand DNA breaks (DSBs)

* o = Cell’'s sensitivity to lethal or irreparable DSBs

* B > Cell’s sensitivity to potentially lethal or
repairable DSBs.

* o/ - Describes how well a cell can repair
damage.

* Low o/ (~3) = late responding tissue, high o/p
(~10) = early responding tissue.

The LQ model would most directly
describe the number of:

‘20% 1. Rats developing skin lesions following difq*erent levels

20% O radmron

20%

xternal

beam radiation

‘20% 3. Cancer cells surviving irradiation with diffiarent dose

4. Recurrences following patient radiation treatment for




The LQ model would most directly
describe the number of:

3. Cancer cells surviving irradiation with different
dose levels

= e_{‘tﬂ"'ﬁﬂz)

Source: Hall EJ and Giacca AJ. Radiobiology for the radiologist. 7th
ed. Philadelphia: Lippincott Williams & Wilkins; 2011.

* LQ model: S is the surviving fraction of cells

» Does not apply to different outcomes.
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Determining cell numbers

Fill container / media

Spin down, replace
media and re-mix

Plate & grow cells to
(near) confluence

Stock of

» “known”
concentration

of cells

Count w/ haemocytometer
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Counting Colonies

0Gy 8 Gy
* Grow for 10-14 days after
treatment.

« Always create non-irradiated
controls.

« Stain cells with crystal violet or
some other similar agent.

« Counts done by first finding and
denoting smallest colony w/
appropriate # of cells (~50, for
example) under microscope.

« Manually count all dots on a plate
which are that size or larger.
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Clonogenic Survival Assa

* “Gold standard” of cell
survival assays in

Plate and irradiate cells

. radiobiology.
Incubate for several cell * Direct measure of cell
cycles .
Y survival.
—

 “Survival” usually defined
as cells which can survive x
divisions (7 is typical)

Wash and stain plates

|

» Can take 1-2 weeks to run.

Count Colonies
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Serial Dilutions

st Stock of 1 million cells/mL

* Start with “known” concentration.

» “Serial” dilutions: portions of
U + U “memen " subsequent stocks are taken to
veda stk

create desired new concentrations.

Media

U +
e st » Each subsequent stock is an
) on e estimate of a previous estimate.

) o Use these diluted concentrations
(Solution B) to plate nknownn numbers Of ce||s

[ c—
+

[ — [ c—
1 I

o am + Good mixing and experimental
technique is imperative to minimize
U + U" Srmes™  error.

mi amL
Media  Solution C

[ emm—
n
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Inter-observer error

Observer A B c D B+Micro A B c D
Counts 9% Difference in count vs B+Micro
6 Plate Average:
wior 0Gy 647 587 692 552 66 200% -11.10% 4.80% -16.40%
6Gy 978 938 103 1205 1498  -34.70% -37.40% -26.40% -19.60%
8G) 867 735 1523 1312 1252  -30.80% -41.30% 21.70% 4.80%
6 Plate Average:
. oGy 728 677 763 75 737 110% -8.10% 360% 1.80%
6Gy 845 748 111 100 86.3  -210% -13.30% 28.60% 16.00%
8G) 618 575 50 462 57 850% 0.90% -12.30% -19.00%
6 Plate Average:
50208 oGy 647 60 585 572 62.7  320% -430% -6.60% -8.80%
6Gy 703 728 745 505 65.3  7.70% 11.50% 14.00% -22.70%
86, 938 927 967 102 107.3  -12.60% -13.70% -0.90% -510%

* Cell appearances, colony size vary by cell line, dose.

» Human factors - differences in the counting numbers
achieved by observers.

» Do not mix results from multiple observers without further
analysis.
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Intra-observer error Statistics of Survival

. ) o « PE is the plating efficiency, the experimental iDr__|[# cells counted
« Inexperienced Observer, 8 Gy WiDr Plate (the “hardest”) > plating € Y P e # Cells
fth hand + bility betw b control which describes how many cells die with | Gy | Plated AlB|C
of the one on hand — most variability between observers no dose or action applied. 5T 100 |59 [ 557L]
05| 100 | 63 | 63 | 64
Count Plate %Standard PE=S(D=0)= 1 ﬂ E £ =0.683 1 | 100 | 57 [ 60 | 56
dst 2nd 3rd Average Error 3 <100 100 100 2 | 200 [ 78 [ 95 [ 77 |
1 146 168 164 159.3 4.25% 7 500 | 95 | 76 | 83
o g izg ;3 gg iggg gzgx « Average surviving fraction is the ratio of the 8 15000 | 54 | 51145
Nomber 4 1 a3 100 1383 2% number of cells counted (t) to the “known” number
5 196 169 163 176 5.77% plated (n), accounting for the PE:
6 179 192 180 183.7 2.27%
Averages 170.8 1747 159.2 168.2 6.02% 1 78 95 7

S(D=2Gy)=0683-=-> ——+_——+_—=0.284
R . 3 <200 200 200
* Human factors also give rise to intra-observer error.

« Standard error propagation techniques could then be used to

+ With a single observer, all of the above errors fall into the characterize the uncertainty in PE and cell survival:

“rule-of-thumb” of around 10% variation in the end point of the r -
Gop _o(2(0 =0} Bz ,!(_ i G(FE?) +( 1 O(KDBT

assay. FE = wD=0 S{T) _," PEZn(D) PE-niB)

A Different Approach Determining Parameters

* Gupta et al. Radiat Res. 1996 show a potential way to statistically « Results give you errors at each iDr # colonies
account for the uncertainty the survival data. survival point. o pedsl ale | c
+ Can use a binomial distribution basis or Poisson statistics for « Fit data to the model to get 005 igg :g gg ;}1

calcuations >

parameters. T | 100 | 57 | 60 | 56
— Use of Poisson considers n (plating number) has uncertaint . 2 | 200 | 78195177
plating ¥ « Ex: Solve LQ model to make it a 4 [ 500 [o5]76 |83
) ) ) | al: _ 2 8 | 5000 | 54 | 51 | 4

* Plate different n values to characterize error in PE. (c = control, t = polynomial: —In{(§) = ab + BB
irradiated). f s G o PR T « Linear regression analysis or

_ - - X . . )
P = PE e, sig e 0061 T o008 [ 070 | other similar tools can fit the
. - survival data.

« Fieller’'s theorem allows for confidence intervals from ratios of
two means:

* Generate parameters (o, f3)
along with standard errors from
the fit.

Binomial:v_‘.m
[

R o A 3

Surviving Fraction

Other Issues VI N i

+ Multiple (= 3) plates for each condition are Dilutions in the clonogenic assay
recommended - biological variation introduce what type of uncertainty?

» Repeat experiments multiple (= 3) times - similar
results show an effect is real.

Estimation in numbers of cells plbted.

» Probabilistic nature of radiation induced cell death + ‘20% Uncertainty in dose delivered ‘

human factors in counting = plates with low colony |zo%
counts (below 30-50) could skew results.

Yield inter-observer counting errbrs

B D =

Increase the number of plates neéded

» “Calibrate” the plating number to yield appropriate _
numbers of colonies at each dose level.

« Plating too many cells can result in minimal or no
survivors.
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M Extcrnal Estimates

Dilutions in the clonogenic assay « Some will use model parameters acquired from

introduce what type of uncertainty? literature or “generalized” estimates.
. » Experimentally determined parameters can vary
1. Estimation in numbers of cells plated. by cells , technique, equipment used, experiment

performer, etc.
Source: Gupta N, Lamborn K, Deen DF. “A Statistical Approach for

Analyzing Clonogenic Surival Data.” Radiat Res. 145 636-640 (1996) . Example generalized estimates: (l/ﬁ =3 for
normal tissue, =10 for tumors.
* Stir then draw a certain amount of liquid with a

“known” concentration of cells. » Use either technique with caution.

» Survey the literature, and attempt to account for

_— . " ) the error or uncertainty involved in such
« Each dilution - introduce additional uncertainty. assumptions

» Don'’t truly know how many cells you have plated.

Parameter Estimation Issues Parameter Estimation Issues

« Parameters for the same line or tissue can vary + Values can differ between cell line/types and from
widely in the literature. individual to individual, or from outcome to outcome:
* Example: SQ-20B (human head-and-neck cancer Kzt of LO mode prsoriers
cells). ) @ & o
SQ-20B Parameters w:.:., o w118 L 037 155
Source Energy Technique a p a/p Rethabty befere * meonths frernss) (o fonnest o
Beuve et al., UROBP (2008) 10 MV Monolayer 0.058  0.047 12 o .:':., 0] r:,.’:, ) l:;;m] :;f;m.
" 250 kvp Monolayer 0.11 0.037 3.0 Lachaliny after } Months . B e .
Belli et al., J. Rad Res (2008) %Co / **’Cs Monolayer 0.16 0.012 13.3 b |:)Ju.,u_1] |::;,ou| [DazaTs) (42,08
Dahlberg et al. Can Res (1999) 160 kVp Monolayer 0252 0023 110 ot foce = 235 % i . .
Altman et al. IROBP (2009) 6MV Monolayer 0.14 0.016 8.7 lasny [-no2s2d 10:4.1.000 L-3443]

The cmmaics |43, coafdence iaterval] fir alpha s bela were multipliod by 19 ad 100 Fot loghdiny perposs, respectively
[MA | = prongrass fudded s caloulate confidence bmis
Excerpted from: Gasinska A, et al. Early and late injuries in mouse rectum after fractionated X-ray and neutron irradiation.

« Besides experimental variations, cells can also Radioher Oncol 195326 344553
mutate between stocks in different places.
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Thank Youl!




