

Introduction

uncertainty.

• Fundamental tumor/cell/cancer biology is becoming a more integral part of medical physics.

- More widespread soft tissue / functional imaging
 Broader use of biological models in treatment
- planning.

Increased push for evidence based decision making.

• Physics and biology groups are segregated.

• Physicists need to better understand biology studies and their sources of uncertainty.

Biological Models in RT

The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPMa) X. Allen LJ, Markus Alber, Joseph O. Deasy, Andrew Jackson, Kyung-Wook Ken Jee, Lawrence B. Marks, Mary K. Matel, Charles Mayo, Vitali Moiseenko, Alan E. Nahum, Andrzej Niemierko, Vladimir A. Semenenko, and Ellen D. Yorke

Citation: Medical Physics 39, 1386 (2012); doi: 10.1118/1.3685447

•Example: Use of radiobiological models in RT

• To properly design studies and assess the data and uncertainty need to understand:

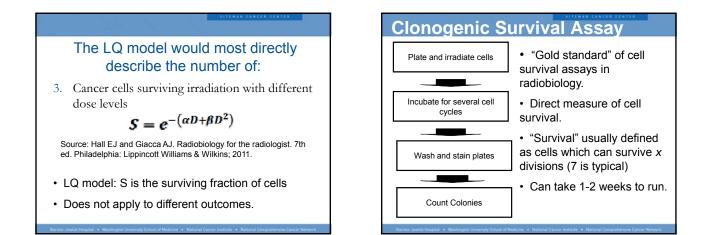
- What is actually being modeled, under what conditions, and how this can affect the results.

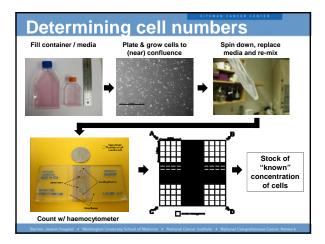
- Where the uncertainty lies in each step.
- How to properly interpret and analyze the data.

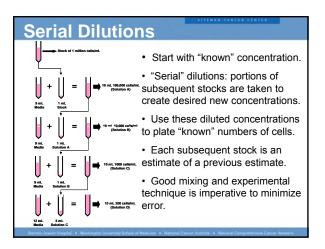
Example: (Simple) LQ Model • "Simple" linear quadratic (LQ) model: $S = e^{-(\alpha D + \beta D^2)}$ • S = <u>surviving fraction of cells</u> for a single fraction of radiation (D) • LQ model forms the basis for BED, EQD, some TCP / NTCP models among others. • S does not apply to patient, animal, or tissue survival – only cells. • If your assay/experiment does not directly measure cell survival, it is either not applicable or there is additional

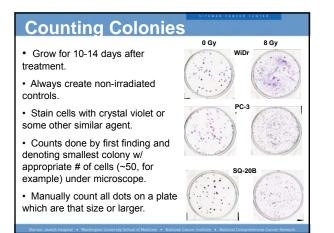
α , β , and α/β

• LQ model cell kill believed to be related to double strand DNA breaks (DSBs)


• $\alpha \rightarrow$ Cell's sensitivity to lethal or irreparable DSBs

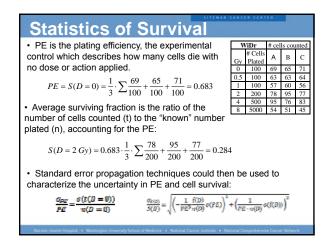

• $\beta \rightarrow$ Cell's sensitivity to potentially lethal or repairable DSBs.


• $\alpha/\beta \rightarrow$ Describes how well a cell can repair damage.


• Low α/β (~3) = late responding tissue, high α/β (~10) = early responding tissue.

The LQ model would most directly describe the number of: 20% 1. Rats developing skin lesions following different levels of radiation 20% Patients developing a complication after external 20% beam radiation 20% 3. Cancer cells surviving irradiation with different dose levels 20% Recurrences following patient radiation treatment for 4. GBM 10

	Observer	Α	в	С	D	B+Micro	А	В	С	D
			Co	unts			% Diffe	rence in c	count vs E	+Micro
	6 Plate Average:									
/iDr	0 Gy	64.7	58.7	69.2	55.2	66			4.80%	
	6 Gy	97.8	93.8	110.3	120.5	149.8			-26.40%	
	8 Gy	86.7	73.5	152.3	131.2	125.2	-30.80%	-41.30%	21.70%	4.80%
	6 Plate Average:									
C-3	0 Gy	72.8	67.7	76.3	75	73.7	-1.10%		3.60%	1.80%
	6 Gy	84.5	74.8	111	100	86.3		-13.30%		16.00%
	8 Gy	61.8	57.5	50	46.2	57	8.50%	0.90%	-12.30%	-19.00%
	6 Plate Average:									
-20B	0 Gy	64.7	60	58.5	57.2	62.7	3.20%	-4.30%	-6.60%	-8.80%
	6 Gy	70.3	72.8	74.5	50.5	65.3	7.70%	11.50%	14.00%	
	8 Gv	93.8	92.7	96.7	102	107.3	-12.60%			

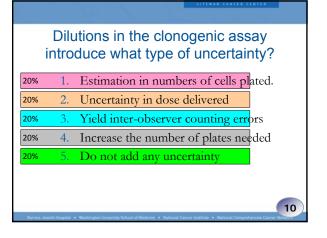

Intra-observer error

Inexperienced Observer, 8 Gy WiDr Plate (the "hardest")
 of the one on hand – most variability between observers

		Count		Plate	%Standard	
		1st	2nd	3rd	Average	Error
	1	146	168	164	159.3	4.25%
	2	184	170	136	163.3	8.73%
Plate	3	163	211	192	188.7	7.40%
Number	4	157	138	120	138.3	7.72%
	5	196	169	163	176	5.77%
	6	179	192	180	183.7	2.27%
Averages		170.8	174.7	159.2	168.2	6.02%

· Human factors also give rise to intra-observer error.

• With a single observer, all of the above errors fall into the "rule-of-thumb" of around 10% variation in the end point of the assay.



A Different Approach • Gupta et al. Radiat Res. 1996 show a potential way to statistically account for the uncertainty the survival data. • Can use a binomial distribution basis or Poisson statistics for calcuations \rightarrow • Use of Poisson considers n (plating number) has uncertainty • Plate different n values to characterize error in PE. (c = control, t = irradiated). $\hat{\mathbf{p}}_{E_{k}} = \frac{t_{k}}{n_{k}}$ $\hat{\mathbf{p}}_{E_{k}} = \frac{f_{k}}{n_{k}}$ $\hat{\mathbf{s}}^{*} = \frac{\hat{\mathbf{p}}_{E_{k}}}{\hat{\mathbf{p}}_{E_{k}}}$ • Fieller's theorem allows for confidence intervals from ratios of two means: $\left[\hat{\mathbf{s}}^{*} + \left(\frac{\mathbf{s}}{|\mathbf{r}_{E_{k}}}\right) \cdot \hat{\mathbf{s}}^{*} + \left(\frac{\mathbf{z}}{\hat{\mathbf{p}}_{k}}\right)^{*} \cdot \mathbf{v}_{k}(1-s)\right] = s + \left(\frac{\mathbf{z}}{\hat{\mathbf{p}}_{k}}\right)^{*} \cdot \mathbf{v}_{k} = \frac{FE_{s}(1-FE_{s})}{n_{s}}$

Determining Parameters · Results give you errors at each WiDr # colonies survival point. # Cells А в С Plated 100 71 · Fit data to the model to get 0.5 100 63 63 64 parameters. 100 60 56 · Ex: Solve LQ model to make it a 500 95 76 83 8 5000 54 51 45 polynomial: $-\ln(S) = \alpha D + \beta D^2$ · Linear regression analysis or other similar tools can fit the survival data. Fraction • Generate parameters (α, β) along with standard errors from /iving the fit. Dose (Gy)

Other Issues

- Multiple (≥ 3) plates for each condition are recommended → biological variation
- Repeat experiments multiple (≥ 3) times → similar results show an effect is real.
- Probabilistic nature of radiation induced cell death + human factors in counting → plates with low colony counts (below 30-50) could skew results.
- "Calibrate" the plating number to yield appropriate numbers of colonies at each dose level.
- Plating too many cells can result in minimal or no survivors.

Dilutions in the clonogenic assay introduce what type of uncertainty?

1. Estimation in numbers of cells plated.

Source: Gupta N, Lamborn K, Deen DF. "A Statistical Approach for Analyzing Clonogenic Surival Data." Radiat Res. 145 636-640 (1996)

- Stir then draw a certain amount of liquid with a "known" concentration of cells.
- Don't truly know how many cells you have plated.
- Each dilution → introduce additional uncertainty.

External Estimates

- Some will use model parameters acquired from literature or "generalized" estimates.
- Experimentally determined parameters can vary by cells , technique, equipment used, experiment performer, etc.
- Example generalized estimates: α/β = 3 for normal tissue, =10 for tumors.
- Use either technique with caution.
- Survey the literature, and attempt to account for the error or uncertainty involved in such assumptions.

Parameter Estimation Issues

• Parameters for the same line or tissue can vary widely in the literature.

• Example: SQ-20B (human head-and-neck cancer cells).

SQ-20B Parameters							
Source	Energy	Technique	α	β	α/β		
Beuve et al., IJROBP (2008)	10 MV	Monolayer	0.058	0.047	1.2		
	250 kVp	Monolayer	0.11	0.037	3.0		
Belli et al., J. Rad Res (2008)	⁶⁰ Co / ¹³⁷ Cs	Monolayer	0.16	0.012	13.3		
Dahlberg et al. Can Res (1999)	160 kVp	Monolayer	0.252	0.023	11.0		
Altman et al. IJROBP (2009)	6 MV	Monolayer	0.14	0.016	8.7		

• Besides experimental variations, cells can also mutate between stocks in different places.

Parameter Estimation Issues

• Values can differ between cell line/types and from individual to individual, or from outcome to outcome:

stimates	of	LQ	model	ра

	ĸ	10×alpha (Gy ⁻³)	100 × Beta (Gy ⁻²)	Alpha/beta (Gy)
Weight loss > 15%				
X-rays	357.8	1.13	0.57	19.9
	[149.9,845.6]	[0.95,1.31]	[0.44.0.69]	[15.2,27.0]
Lethality before 2 months				
X-rays	61.5	0.50	0.37	13.4
	[34.1,110.0]	[0.40,0.60]	[0.29,0.46]	[9.3,19.5]
Lethality after 2 Months				
X-rays	24.0	0.41	0.60	6.9
	[13.2,44.3]	[0.29,0.54]	[0:45,0:75]	[4.2,10.8]
Short feces > 25%				
X-eave	7.6	0.11	0.77	1.4
	[4.4.13.1]	[-0.02, 0.24]	10.54,3,001	1 - 5.4,4,51

International (17:5) conserves attriving for agent and beta were mutuples by 10 and 100 for lighting parpose, respectively. (NA) = program fields to calculate confidence limits. Excepted from: Gasinaka A, et al. Early and late injuries in mouse rectum after fractionated X-ray and neutron irradiatio Radioted[®] root 1993;522:423-433.

Summary

• Biological experiments and data are an increasingly important part of medical physicists professional lives.

• Biological experiments >> variability vs. physicsbased ones.

• For model based studies, know what is being modeled, under what conditions, and the uncertainties in each step.

• Standard error analysis may be applicable, but effort must be made to characterize the errors of all the elements used.

Acknowlegements

John C. Roeske, Ph.D. – Loyola University

Charles A. Pelizzari, Ph.D. – University of Chicago

Steven J. Chmura M.D., Ph.D. – University of Chicago Bulent Aydogan, Ph.D. – University of Chicago David J. Grdina, Ph.D. – University of Chicago

Chmura Lab Michelle A. Stinauer, M.D. Lauren C. Herman, M.D. Desler Javier, M.D. Matthew L. Pytynia, B.A. Ahmed A. Chaudhary, M.D.

Univ. Illinois - Chicago Alan M. Diamond, Ph.D Marci Gutt

