Non-Invasive Image-guided Breast Brachytherapy (NIBB)

Jessica Hiatt, MS, DABR

AAPM Annual Meeting

July 13th, 2015
Disclosures

• Travel expenses subsidized by ART Corporation
Learning Objectives

• Discuss the NIBB method
• Discuss updated clinical results of NIBB for APBI
• Discuss acute toxicity and toxicity avoidance for NIBB
• Future direction for APBI using NIBB
Non-invasive Image-guided Breast Brachytherapy (AccuBoost)

• Novel technique for partial breast irradiation
 – Non-invasive
 – Image-guidance
 – Precision Targeting
 – Breast immobilization
 • No need for large PTV margins
 – Collimated photon emissions using Tungsten alloy applicators
 – Utilizes HDR 192Ir source
Breast Compression

 Pictures courtesy of Advanced Radiation Therapy, LLC

kV imaging in immobilized position
Applicator Selection

Tumor bed with 1 cm margin
6 cm Round Applicator
Process is repeated in an orthogonal axis

Breast Compression

kV imaging in immobilized position

Pictures courtesy of Advanced Radiation Therapy, LLC
Two Orthogonal Treatment Axes

Reduced Skin dose
Benefits of Breast Compression

- Breast compression achieve 3 very important functions:
 - Breast immobilization.
 - Decrease separation reduced skin dose.
 - Displaces non-target breast tissue out of the radiation field.
Fine Element Analysis (FEA) Deformable Model
Fine Element Analysis (FEA) Deformable Model
Dosimetric Comparison of APBI using 3D-CRT and NIBB

Sioshansi et al. IJROBP 2011
Results: PTV Dose Comparison

<table>
<thead>
<tr>
<th>APBI</th>
<th>PTV Vol (cc)</th>
<th>PTV D_{max} (Gy)</th>
<th>PTV D_{min} (Gy)</th>
<th>PTV D_{mean} (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median AccuBoost [p25-p75]</td>
<td>77.9 [58.2, 118.7]</td>
<td>45.5 [42.7, 48.6]</td>
<td>33.9 [29.3, 35.5]</td>
<td>39.5 [37.1, 40]</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>0.06</td>
<td>0.25</td>
<td>0.64</td>
</tr>
</tbody>
</table>

No difference in target coverage
Results: PTV Dose Comparison

<table>
<thead>
<tr>
<th>APBI</th>
<th>PTV Vol (cc)</th>
<th>PTV D_{max} (Gy)</th>
<th>PTV D_{min} (Gy)</th>
<th>PTV D_{mean} (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median AccuBoost [p25-p75]</td>
<td>77.9 [58.2, 118.7]</td>
<td>45.5 [42.7, 48.6]</td>
<td>33.9 [29.3, 35.5]</td>
<td>39.5 [37.1, 40]</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>0.06</td>
<td>0.25</td>
<td>0.64</td>
</tr>
</tbody>
</table>

NIBB more heterogeneous like other brachytherapy techniques
Results: PTV Dose Comparison

<table>
<thead>
<tr>
<th>APBI</th>
<th>PTV Vol (cc)</th>
<th>PTV D_{max} (Gy)</th>
<th>PTV D_{min} (Gy)</th>
<th>PTV D_{mean} (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median AccuBoost</td>
<td>77.9 [58.2, 118.7]</td>
<td>45.5 [42.7, 48.6]</td>
<td>33.9 [29.3, 35.5]</td>
<td>39.5 [37.1, 40]</td>
</tr>
<tr>
<td>[p-25-p75]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median 3D-CRT</td>
<td>221.6 [202, 360.2]</td>
<td>40 [39.7, 40.6]</td>
<td>31.4 [28.6, 32.7]</td>
<td>38.6 [38, 38.6]</td>
</tr>
<tr>
<td>[p-25-p75]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>0.06</td>
<td>0.25</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Target volume decrease $\rightarrow \frac{1}{3}!!$
Normal Tissue D_{max} Comparison

<table>
<thead>
<tr>
<th>APBI</th>
<th>CW Max (cGy)</th>
<th>Lung Max (cGy)</th>
<th>Skin Max (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median AccuBoost [p25-p75]</td>
<td>32.4 [27.4, 88.4]</td>
<td>18.7 [17.6, 25.4]</td>
<td>94.8 [76.5, 101]</td>
</tr>
<tr>
<td>Median 3D-CRT [p-25-p75]</td>
<td>99.9 [95.1, 100.5]</td>
<td>91.9 [88.4, 98]</td>
<td>104 [103.5, 106]</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: Values marked with an arrow indicate significant differences compared to baseline.
According to Sioshansi et al., the planning target volume defined for an NIBB APBI treatment is ______ the volume of a 3DCRT APBI treatment.

1. 3 times
2. double
3. equivalent to
4. one third
5. half
Correct answer: 4 – one third

Sioshansi S, Rivard MJ, Hiatt JR, Hurley AA, Lee Y, Wazer DE.

Dose modeling of noninvasive image-guided breast brachytherapy in comparison to electron beam boost and three-dimensional conformal accelerated partial breast irradiation.

Int J Radiat Oncol Biol Phys. 2011 Jun 1;80(2):410-6
NIBB to deliver APBI: Potential Advantages

• Non-invasive
 → More acceptable to many patients
• Oncoplastic reconstruction OK and no need for indwelling balloon catheter
 → No increased risk of persistent seroma
• Breast immobilization and image-guidance
 → No need for large PTV margins
 → Potential for decrease in fibrosis
• Potential for improved cosmetic outcomes over existing APBI techniques
NIBB to deliver APBI: Potential Disadvantages

• Long treatment times
 ➔ Treatment of each axis could take up to 30 minutes depending on compression and source strength

• Resource intense
 ➔ Physicist and MD at console for entire treatment (1hr+)

• Potential for error
 ➔ Manual transfer of data from nomogram to console
Methods

• Prospective Phase II trial. IRB approved and monitored by the BrUOG data safety monitoring board. (BrUOG trial Br-251; NCT01463007)
• Enrolled patients received APBI using NIBB.
• 34Gy in 10 fractions using Ir-192 HDR source was delivered to the CTV/PTV which included the lumpectomy cavity with a 1 cm margin.
• 2 orthogonal axes were treated for each fraction and separation was limited to ≤ 8cm.
• Treatment was either daily or BID based on pt preference.
• Patients are followed clinically at regular intervals. Mammography is performed yearly. Photographs for cosmetic assessment are taken at baseline and at each f/u visit.
• Toxicity assessment is based on CTCAE v3.0. Cosmetic outcome is assessed based on the Harvard scale.
NIBB for APBI

- Prospective clinical trial completed accrual
- 40 patients completed protocol treatment
Results – Treatment tolerability

• Treatment was well tolerated by all patients

• Treatment time
 – Average treatment time per axis: 14 min (range 5-20 min)
 – Average time from start of first axis to completion of orthogonal axis: 43 min (range 30-63 min)

• Discomfort during breast compression
 – Median score: 1 (range 0-7) (10 point pain scale)

• Treatment related fatigue
 – 95% No to mild fatigue (Grade 0-1)
Results – Acute Skin Reaction

- No skin reaction (Gr 0): 8pts (20%)
- Faint erythema (Gr 1): 21pts (53%)
- Moderate erythema (Gr 2): 11pts (28%)
- No pt developed Gr 3 skin reaction or moist desquamation.
- Maximum skin reaction typically seen after completion of treatment to 2 weeks.
First vs. Second Generation Applicators

- Second generation round applicators have conical center which reduces skin dose compared to first generation round and D-shaped applicators.

- Rate of Grade 2 acute skin reaction was associated with both applicator type and breast compression.
Acute Skin Reaction by Applicator Type

<table>
<thead>
<tr>
<th>Applicator</th>
<th>Grade 2 Toxicity % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1\text{st} Generation</td>
<td>62.5% (5/8)</td>
</tr>
<tr>
<td>Mixed</td>
<td>33.3% (6/18)</td>
</tr>
<tr>
<td>2\text{nd}/3\text{rd} Generation</td>
<td>0% (0/14)</td>
</tr>
</tbody>
</table>

p=0.001
Schematic Comparison of 1st and 2nd Generation Applicators
Average Skin Dose by Applicator Type

Skin Dose (Ratio of prescription dose) vs. Separation (cm)

- 6 cm Round
- 6 cm SDO
- 6 cm DRO
Results – Late Side Effects and Cosmetic Outcome

• Early results are very favorable
• Median f/u 1 year
• IBTR: 2.5%
• E/G Cosmesis: 97.5%
• SubQ Fibrosis Gr 2-3: 0%
• No Grade 2 or greater late toxicity.

Late Toxicity CTCAE v3.0

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperpigmentation</td>
</tr>
<tr>
<td>Telangiectasia</td>
</tr>
<tr>
<td>Skin Atrophy</td>
</tr>
<tr>
<td>Skin/Subcutaneous Tissue Induration/fibrosis</td>
</tr>
<tr>
<td>Fibrosis-cosmesis</td>
</tr>
<tr>
<td>Soft tissue necrosis</td>
</tr>
<tr>
<td>Seroma</td>
</tr>
<tr>
<td>Breast Pain</td>
</tr>
<tr>
<td>Deformity Nipple/areolar</td>
</tr>
<tr>
<td>Breast volume/hypoplasia</td>
</tr>
<tr>
<td>Fat Necrosis (Lovey et al, IJROBP 2007)</td>
</tr>
</tbody>
</table>
Future Directions: NIBB ABPI Fast trial

• Rationale:
 – ¾ of patients elected for once daily treatment
 → patients don’t like BID.
 – However, this results in treatment delivered over 2 weeks
 → not ideal in regards to convenience.

• NIBB APBI Fast trial → 5 daily fractions

• Dose: 28.5Gy (5.7Gy per fraction)
Patient Selection/Eligibility

• NIBB feasible in most patients.
• Patients with larger breast size more likely to be good candidates.
• Posterior tumor beds can be challenging to reach.
• Surgical clips helpful in defining tumor bed and increase eligibility likelihood.

Hepel et al. Brachytherapy 2014
Hepel et al. found that nearly ___% of patients with surgical clips were able to be treated using the NIBB technique.
Correct answer: 4 – 80%

Hepel JT, Leonard KL, Hiatt JR, DiPetrillo TA, Wazer DE.

Factors influencing eligibility for breast boost using noninvasive image-guided breast brachytherapy.

Brachytherapy. 2014 Nov-Dec;13(6):579-83
Conclusions

• NIBB to deliver boost and APBI is feasible and well tolerated by patients.
• Acute skin reaction is mild and infrequent.
• Virtually no skin reaction is seen with 2nd/3rd generation applicators.
• Early results of late outcomes are encouraging.
 – no significant late toxicity, and good cosmetic outcomes.
 – Freedom from IBTR 97.5%.
• Additional patients and longer follow up is needed to confirm these late endpoints.