

Jennifer O'Daniel, Ph.D. & Fang-Fang Yin, Ph.D. Duke University Medical Center Annual AAPM Meeting, 2015

Acknowledgments

- Thanks to Saiful Huq for an illuminating conversation about the application of TG-100
- Thanks to all of the physicists and therapists at Duke University, who have spent many hours collecting the QA data used in this analysis

AAPM: Task Group-142

DukeMedicine

Multitude of linear accelerator guality assurance tasks

Institution-specific TG-142?

- "Institutional deviations from some of these recommendations are expected based upon the institution's policy and procedures..."
- To change the frequency of a particular test:
 - Review an appreciable history of results
 - · Consider the potential impact of failure
 - Perform an FMEA analysis

UukeMedicine

Method for Evaluating QA Needs in Radiation Therapy Chair: M. Saiful Huq – TG-100 (Start: 8/1/2003, End: no date on file)

Charge: Specific charges of this task group are defined below. The final report may include additional material deemed necessary during the preparation of the final report.

1. Review and critique the existing guidance from the AAPM in documents such as TG-40, 56, 59, 43 old and new, 60, 64, and guidance from ACR and ACMP reports on QA in Radiation Oncology, ESTRO report on QA in radiotherapy, IEC publications on functional performance of radiotherapy equipment, and finally ISO guidelines on quality management and quality assurance. The objective will be to determine the specific areas that have been omitted and need better coverage and also develop a suitable general quality assurance program.

 Identify a structured systematic QA program approach that balances patient safety and quality versus resources commonly available and strike a good balance between prescriptiveness and flexibility.

3. After the identification of the hazard analysis for broad c

- Create a process map
- Identify weak points
- Score each weak point
 - Occurrence = frequency of failure
 - Severity = effect of failure
 - Detectability = probability of <u>not</u> detecting the failure
- Rank and prioritize by score
 - RPN = Risk Priority Number = O*S*D
- Develop mitigation strategies

UukeMedicine

S Huq et al, IJROBP 71, 2008 E Ford et al, IJROBP 74, 2009

TG-100 FMEA Analysis of IMRT

- Human error (44%)
 - Human failure
 - Inadequate training
 - Lack of communication
- Inadequate procedures/resources (31%)
- Hardware/software failures (13%)
- Design or commissioning failure (8%)
- Others (4%)

U DukeMedicine

S Huq, New paradigms for quality management in radiation therapy. Presentation at 2011 AAPM summer school. AAPM Virtual Library.

Top Ten Failure Modes of External Beam Radiotherapy

Failure mode	Cause	Process step	s	0	D	RPN
Delay in film check.	Films not assigned to physician in queue.	Tx delivery	8	10	5	400
No pacemaker protocol/consent for patient with a pacemaker.	Simulation staff did not check H&P or query patient.	Simulation	10	5	5	250
Critical structure not contoured in treatment planning system.	Oversight of physician.	Tx planning	10	4	6	240
Pregnant patient simulated without the team's knowledge of the pregnancy.	Patient does not know she is pregnant and/or was not asked. Unclear policy.	Simulation	10	2	10	200
Tomotherapy blocks turned off. Directional blocking for critical structure.	Oversight by physicist in planning.	Tx planning	5	3	10	150
RTT unaware of Rx or fractionation change, e.g., change when boost starts.	Communication lapse between teams.	On-Tx Mgmt	3	8	5	120
Unclear setup instructions from simulation, e.g., two scans performed. (Supine vs prone) for planning evaluation.	Communication lapse between teams as to final directives for setup.	Tx planning	4	5	6	120
Prior treatment records not available.	Chart archived offsite or patient arrives without records.	Pt assessment	10	2	5	100
Wrong couch kicks or table angles entered in R&V system.	Oversight of planner. Confusion due to different labeling conventions on different machines.	Tx planning	10	9	1	90
Treatment planner unclear if physician contouring is complete.	Communication lapse between teams.	Tx planning	10	3	3	90

Top Ten Failure Modes of External Beam Radiotherapy

- Human error = 4
- Communication lapse = 3
- Policy not followed = 2
- Outside our realm of influence = 1
- Hardware/software errors = 0

DukeMedicine

Ford et al, Med. Phys. 41, (2014)

Extending FMEA Analysis to TG-142

- The previous FMEA analysis did not touch materials related to treatment machine failures
- TG-142 is a comprehensive QA protocol for testing the performance of medical linear accelerators
- The purpose of this presentation is to extend the conventional FMEA analysis to treatment machine related as TG-142 described

UukeMedicine

How to Determine the Relative Importance of TG-142 Tests?

- Determine detectability
- Determine failure rate → occurrence
- Determine severity if that failure should occur
- Need to account for the frequency of each test
 - % of time the failure was present over a course of treatment
 - Number of patients affected by the error
 →Introducing patient-load-weighted RPN

UukeMedicine

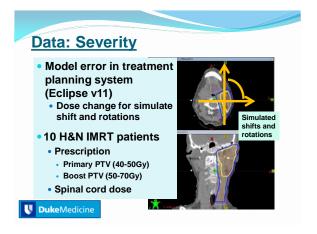
Ranking: Detectability

F	Rank	Estimated Probability of the Failure Going Undetected (%)	Assumptions:
		TG-100 and This Study	• TG-142 →
	1	≤ 0.01	only way to
	2	≤ 0.2	detect error
	3	≤ 0.5	
	4	≤ 1.0	 All tests →
	5	≤ 2.0	100% accurate
	6	≤ 5.0	
	7	≤ 10	All tests →
	8	≤ 15	same detectability
	9	≤ 20	
	10	> 20	

Additional Assumptions

- Routine preventative maintenance tasks are performed on schedule
 - e.g. Image quality is adjusted regularly (CBCT recalibrated annually, kV & MV dark/flood fields redone on a regular basis)
- When accidents/repairs/service occur, appropriate QA tasks are done afterwards
- Errors will be caught before the tolerance limit is passed → modelled at the tolerance limit

UukeMedicine


Data: Occurrence

- 3 Linacs (Varian 21EX) x 3 years = 9 years
 - Daily, weekly, monthly & annual QAs
 - Post-TG-142 implementation
- 2,348 treatment days analyzed
- Minimum detectable occurrence rate
 1/2348 = 0.04%

UukeMedicine

Ranking: Occurrence

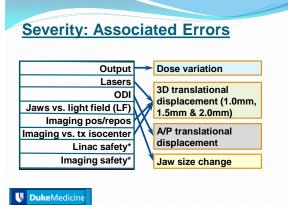
Rank	Frequency of Failure (%)				
	TG-100	This Study			
1	≤ 0.01	≤ 0.01			
2	≤ 0.02	> 0.043 (0/2348)			
3	≤ 0.05	≤ 0.043 (1/2348)			
4	≤ 0.1	≤ 0.1			
5	≤ 0.2	≤ 0.2			
6	≤ 0.5	≤ 0.5			
7	≤1	≤1			
8	≤2	≤2			
9	≤ 5	≤ 5 (117/2348)			
10	> 5	> 5			

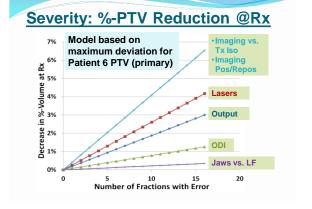
Sample TG-142 FMEA Analysis

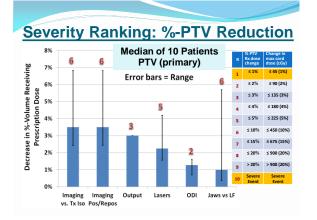
- In the following presentation, we will present two samples of using FMEA analysis for TG-142
 - Daily QA
 - Monthly QA

Ranking: Severity

Rank	TG-100 (Qualitative)	This Study (Quantitative)		
		Change in %-Volume of PTV at Rx Dose	Change in Maximum Dose to Cord (cGy)	
1	No effect	≤ 1%	≤ 45 (1%)	
2	Inconvenience	≤ 2 %	≤ 90 (2%)	
3	Inconvenience	≤ 3 %	≤ 135 (3%)	
4	Minor dosimetric error	≤ 4%	≤ 180 (4%)	
5	Limited toxicity or tumor	≤ 5%	≤ 225 (5%)	
6	underdose	≤ 10%	≤ 450 (10%)	
7	Potentially serious toxicity or	≤ 15%	≤ 675 (15%)	
8	tumor underdose	≤ 20 %	≤ 900 (20%)	
9	Potentially very serious toxicity or tumor underdose	> 20%	> 900 (20%)	
10	Catastrophic	Severe Event	Severe Event	

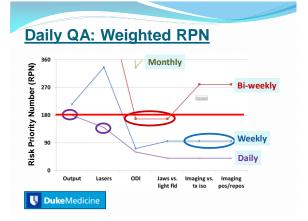

Analysis 1: Daily QA (Non-SRS)


- Output (3%)
- Laser localization (1.5mm)
- ODI @ iso (2mm)
- Jaws vs. light field (2mm)
- MV/kV/CBCT*: position/reposition (2mm)
- MV/kV/CBCT: imaging vs. treat. isocenter (2mm)
- Linac safety: door interlock, door operation, A/V, radiation area monitor, beam on indicator
- Imaging safety: collision interlocks


TG-142 recommendation

Occurrence: Daily QA (Non-SRS)

Daily QA Test		Occurrence (% of total days of operation)
Output	86	3.7% (=86/2348)
Laser	19	0.8%
ODI	2	0.09%
Jaws vs. Light Field (LF)	0	< 0.05%
Imaging Pos/Repos	0	< 0.05%
Imaging vs. Tx Iso	0	< 0.05%
Imaging Safety	0	< 0.05%
Linac Safety	0	< 0.05%
Duke Medicine		



Daily QA: Weighted RPN

QA Frequency 🔿	Daily	Weekly	Bi-weekly	Monthly	Bi-monthly
Errors present (days)	1	5	10	22	44
Output	180	216	504	1008	1476
Lasers	140	336	588	1307	1913
ODI	60	72	168	336	492
Imaging vs. Tx Iso	40	96	280	448	656
Imaging Pos/Repos	40	96	280	448	656
Jaws vs. LF	40	96	168	448	656

Patient-Load-Weighted RPN: Occurrence * Severity (QA frequency) * Number of Patients Affected (QA frequency)

Examples: Daily-RPN = 9 * 1 * 20 = 180 Weekly-RPN = 9 * 1 * 24 = 216 (added 4 new patients)

	<u>S)</u>
Daily: Weekly: Bi-Week	dy:
> Output > Imaging vs. Tx Iso > ODI	
> Lasers > Imaging Pos/Repos > Jaws	vs. LF

Analysis 2: Monthly QA (Non-SRS)

Doutput Mechanicals Dosimetry Mechanical X-ray output constancy Electron output constancy Backup monitor chamber constan Light/Ariation field coincidencel Distance check device for lasers front output

UukeMedicine

Mechanical Lightrafiation field coincidence² lightrafiation field coincidence² (aymentri Distance check device for larser compared we not pointer (@ cantrol limitare angle indicators (@ cantrol angles) (digital only) Jare position indicators (aymentric)² any position indicators (aymentric)² Consult control gravity and the angle Consult control position indicators (aymentric)² Competition position indicators (aymentric)² Linding of wedges, blocking tray⁴ Localize how how how more the angle of the

	Imaging
	Planar MV imaging (EPID)
ric)	Imaging and treatment coordinate coincidence (four cardinal angles)
with	Scaling ^b
	Spatial resolution Contrast
	Uniformity and noise
	Planar kV imaging ^d
	Imaging and treatment coordinate coincidence (four cardinal angles)
	Scaling
	Spatial resolution
	Contrast
	Uniformity and noise
	Cone-beam CT (kV and MV)
	Geometric distortion
	Spatial resolution
	Contrast
	HU constancy
	Uniformity and noise

Monthly QA: Weighted RPN

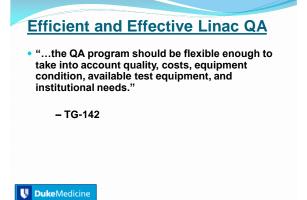
	Daily	Weekly	Bi-weekly	Monthly	Bi-monthly
Error Present (Days)	1	5	10	22	44
Lasers	140	336	588	1307	1913
Output	180	216	504	1008	1476
Light Field vs. Rad	100	120	280	560	820
>Imaging vs. Tx Iso, >Imaging Pos/Repos, >Scaling	40	96	280	448	656
Jaws vs. LF	40	96	168	448	656
Image Quality, ODI	60	72	168	336	492
Couch Lateral	40	96	168	299	437
Dationt Load Waighton				(0.4	

Patient-Load-Weighted RPN: Occurrence * Severity (QA frequency) * Number of Patients Affected (QA frequency) To keep RPN number ≤ 560 (largest seen on monthly QA), then.....

Monthly QA: Weighted RPN

Summary: New Frequencies for **TG142 Monthly QA (Non-SRS)** Monthly: **Bi-Monthly:** Semi-Annual: > Collimator annual: > Couch > Output > Lasers > Couch Lat > Gantry angle > Jaws vs. LF > ODI > Couch Ing > Image > LF vs. Rad > Imaging vs. tx iso quality > Image scaling > Imaging pos/repos

UukeMedicine


Note: All tests performed by physicist

Comparison to Medical Physics Practice Guideline (MPPG) for IGRT

	Recommended Frequency					
Test	TG-142	This Study	MPPG			
Imaging vs. Tx iso	Daily	Weekly	Weekly			
Position/Reposition	Daily	Weekly	Weekly			
Image scaling / Geometric distortion	Monthly	Monthly	Semi-annually			
2D image quality	Monthly	Bi-monthly	Annually			
3D image quality	Monthly	Bi-monthly	Annually			

Note: image quality includes contrast, spatial resolution, and uniformity

Reference: J Fontenot, et al. AAPM Medical Physics Practice Guidelines 2.a: Commissioning and quality assurance of X-ray based image-guided radiotherapy systems. JACMP 15(1), 2014.

Thanks for your attention!

Efficient and Effective Linac QA

- Depend upon equipment & patient population
- Focus on tests with high severity and/or high occurrence ranks
- Varian 21EX Linacs & H&N IMRT patients:
 - · Focus on lasers and output
 - Daily QA: consider reducing imaging QA to weekly frequency, certain mechanicals to bi-weekly frequency
 - Monthly QA: consider reducing frequency of image quality QA & certain mechanical QA tests

UukeMedicine

UukeMedicine