Clinical Implementation of MRbased motion management

57th AAPM Annual Meeting Session Program: Therapy Education

Carri Glide-Hurst, PhD Henry Ford Health System

Disclosures

- Henry Ford Health Systems hold a research agreement with Philips Healthcare
- Equipment evaluation agreement with Medspira
- If you see Mickey Mouse, pay attention

TG-76: Patient-specific, large variability

 Table 3. Abdominal motion data. The mean range of motion and the (minimum-maximum) ranges in millimeters for each site and each cohort of subjects. The motion is in the superior-inferior (SI) direction.

Patient-specific, multi-dimensional

Clinically available MRI options

- Triggering: EE from external surrogate
- Internal navigator: EE from internal surrogate (typically liver/lung interface)
- Breath-hold (BH): can get you EE/EI, BUT...
 - Often <u>deep</u> inspiration/exhalation (not natural)
 - MRI scan times >>>CT scan times \rightarrow many BHs for patients
- We need a clinically useable solution to properly determine the 3D target volume

MRI Cine Imaging

- Single slice acquisition
 - Axial, sagittal, coronal

- Can interleave but they are still not acquired at the exact same time
- High temporal resolution (~1-10 fps)
- Can image over many breathing cycles
- Typically not susceptible to motion artifacts
- Yield overall excursion, but not out of plane motion

Cine-MRI liver motion

Kirilova, A., Lockwood, G., Choi, P., Bana, N., Haider, M. A., Brock, K. K., ... & Dawson, L. A. (2008). Threedimensional motion of liver tumors using cine-magnetic resonance imaging. *International Journal of Radiation Oncology** *Biology** *Physics*, *71*(4), 1189-1195.

Cine-MRI pancreas motion

- Sagittal & coronal
- 7 mm thick T2-W, 2 fps over 60 s
- In-plane resolution: 1.5 2.0 mm
- Coronal plane angulated so primary motion positioned in scan plane
- Removed outliers w/95%

Heerkens, Hanne D., et al. "MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer." *Radiotherapy and Oncology* 111.2 (2014): 252-257.

Other Limitations: State of the Art

- MR-compatible equipment
- Similar to 4DCT: external surrogates
- Internal navigators being evaluated
 - No current correlation to clinically available 4DCT
- Subject to sorting artifacts
- MRI scan time >> CT scan time
- Currently evaluating 4DMRI for clinical use

4DMRI Acquisition

- Single shot T2W-TSE 2DMS
- Prospective amplitude-based triggering¹
 - External surrogate (air-filled cushion)
 - Acquires images at specific phases
- Implementing on 1.0T Open Magnet

Coronal 4D-MRI

Clinical Questions

- How many 4DMRI phases do we need?
- Is the algorithm reproducible & robust?
- Is it efficient enough for the clinic, and if not, how can we improve the efficiency?

Initial Evaluation: Equipment

In-house Lego[™] Phantom

QUASAR[™] MRI-Compatible Respiratory Motion Phantom

Glide-Hurst, C. K., Kim, J. P., To, D., Hu, Y., Kadbi, M., Nielsen, T., & Chetty, I. J. (2015). 4DMRI Optimization and Implementation for MRI Simulation. Accepted, *Practical Radiation Oncology* (2015).

We n

de

MA

 \bullet

soft

make

MinIP

Reproducible, 8 phases, ~8 minutes

 Malcolm Baldrige

 ational Quality Award

 1 Award Recipient

Incorporating Visual Feedback (VF)

 Efficiency & regularity evaluation in 10 volunteers with and without VF

Results: Scan Efficiency

Aalcolm Baldrige

011 Award Recipient

Slide courtesy of David To, M.S.

Results: Regularity

Aalcolm Baldrige

011 Award Recipient

Slide courtesy of David To, M.S.

CAUTION: Liver excursion increased with VF

- Centroid to centroid analysis to extract liver excursion
- Will require integration throughout the clinical workflow

	Average Liver Excursion (mm) (Range)					
	S-I	A-P	L-R			
VF	13.7 ± 5.4	4.6 ± 1.9	1.3 ± 1.1			
	(8.3-20.6)	(1.5-8.2)	(0.1-3.1)			
FB	12.4 ± 5.6	3.8 ± 2.2	1.2 ± 1.3			
	(6.8-24.1)	(1.2-7.8)	(0-3.7)			

Patient 4DMRI

- Good image quality
- ~7 minutes
- Tagging acceptable

Remaining Challenges

- Much like 4DCT, 4DMRI requires patient-specific assessment for candidacy
- Patients with irregular breathing patterns may require audio/visual coaching
- Efforts to improve acquisition efficiency are desirable

Ways to improve efficiency

- Use higher field strengths: increase SNR/CNR
- Parallel imaging: reduce data in phase-encode direction
 - Decreases acquisition time 2-3X via combined signal from several coil arrays
- Compressed sensing (undersampling)
- Interleaving planar cine sequences
 - Not acquired at same instance but improves robustness compared to sequential acquisitions

Oh boy! Get out your clickers!

Which technique is most appropriate for assessment of liver cancer motion?

5% 1. 4DCT

- 8% 2. Axial plane cine-MRI images
- 44% **3.** Coronal plane cine-MRI images

43%	4.	4DMRI

¹% 5. Fluoroscopy

Answer 4: 4DMRI

 Adequate liver tumor motion requires <u>soft</u> <u>tissue characterization</u> in all <u>three dimensions</u>, which is possible with 4DMRI

 Single plane cine images will not allow for out-of-plane motion assessment

Kirilova, A., Lockwood, G., Choi, P., Bana, N., Haider, M. A., Brock, K. K., ... & Dawson, L. A. (2008). Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. *International Journal of Radiation Oncology** *Biology** *Physics*, *71*(4), 1189-1195.

What is an advantage of cine MRI?

20%	1.	Multi-planar acquisition
52%	2.	No sorting artifacts
19%	3.	Can measure out of plane motion
4%	4.	Slow acquisition frame rate
5%	5.	Requires a breathing waveform

Answer: 2

Cine images do not require a breathing waveform and thus will not be susceptible to sorting artifacts.

References:

- Eccles, C. L., Patel, R., Simeonov, A. K., Lockwood, G., Haider, M., & Dawson, L. A. (2011). Comparison of liver tumor motion with and without abdominal compression using cinemagnetic resonance imaging. *International Journal of Radiation Oncology* Biology* Physics*, 79(2), 602-608.
- Feng, M., Balter, J. M., Normolle, D., Adusumilli, S., Cao, Y., Chenevert, T. L., & Ben-Josef, E. (2009). Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. *International Journal of Radiation Oncology* Biology* Physics*, 74(3), 884-891.
- Hu, Y., Caruthers, S. D., Low, D. A., Parikh, P. J., & Mutic, S. (2013). Respiratory amplitude guided 4-dimensional magnetic resonance imaging. *International Journal of Radiation Oncology* Biology* Physics*, *86*(1), 198-204.

Prospective 4DMRI acquisition efficiency is decreased by:

78%	Ι.	Irregular	breathing	patterns

- ^{1%} 2. Applying compressed sensing
- **3.** Faster respiratory rate
- 9% 4. Incorporating visual feedback
- 5. Using higher field strength MRIs

Answer: 1

Because prospective 4DMRI triggers off of the respiratory waveform, irregular breathing decreases acquisition efficiency.

References:

- Hu, Y., Caruthers, S. D., Low, D. A., Parikh, P. J., & Mutic, S. (2013). Respiratory amplitude guided 4dimensional magnetic resonance imaging. *Int Journal of Radiation Oncology** *Biology** *Physics*, *86*(1), 198-204.
- Du, D., Caruthers, S. D., Glide-Hurst, C., Low, D. A., Li, H. H., Mutic, S., & Hu, Y. (2015). High-Quality T2-Weighted 4-Dimensional Magnetic Resonance Imaging for Radiation Therapy Applications. *Int Journal of Radiation Oncology* Biology* Physics*, 92(2), 430-437.

