Strategies and Technologies for Cranial Radiosurgery Planning

MLC-based Linac Radiosurgery

Grace Gwe-Ya Kim, Ph.D. DABR

Disclosure

• No conflict of interests to disclose.

Learning Objectives

- Introduce the overview of MLC-based Linac radiosurgery.
- Demonstrate basic treatment planning techniques for MLC based radiosurgery
- Discuss metrics for evaluating SRS treatment plan quality.

Overview

BrainLAB m3

Varian Trilogy

Elekta Axesse

Novalis

Varian Edge

Elekta VersaHD

Evolution of technology

INRS IDYNOMIC NICH

Fromerlessmontroima

HIGHMERSHYBEOM

Hardware MC

MLC based Linac SRS

- Better conformity for irregular target
- Improved dose homogeneity inside the target
- Comparable dose fall-off outside the target
- Less time-consuming treatment planning
- Shorter treatment time
- Linac is not limited for cranial treatment

SAM Question 1.

What is one advantage of MLC-based Linac radiosurgery over other machines?

79% 1. Rel	atively fast treatment delivery
10% 2. Eas	sy to treat heterogeneous tissues
2% 3. Mu	Itiple choices of different cone sizes
3% 4. Mc	ore accurate delivery
5% 5. Eas	sy forward planning

What is one advantage of MLC-based Linac radiosurgery over other machines?

Answer: 1. Relatively fast treatment delivery

Ref: L Ma et al., Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases, Int. J CARS, 20 April 2014

Mechanical Stability

• Linac (TG-142)

- Coincidence of Radiation
 & Mechanical ISO
 - ± 1 mm from baseline
- Couch position indication tolerance
 - 1mm/0.5 degree

Denton et al., JACMP, 16 (2) 175-188, (2015)

- IGRT (TG-142)
 - KV, MV, CBCT, monitoring image system coincidence
 - ≤1 mm
 - Positioning/repositioning
 - ≤1 mm

Multiple Metastases

Tominaga et al., Physics in Med. & Biol., **59**, 7753-7766 (2014)

Gantry 90 ,

(b) Collimator angle 90°

Beam Configuration for Small Field

- Small Field Dosimetry
 - Machine-specificreference field (msr)
 - Plan-class specific reference field (pcsr)
- Beam Configuration
 - Dosimetry leaf gap
 - Transmission
 - Target Spot Size

Table 14 Example Values for Target Spot Size Parameters

Algorithm / Treatment Unit	Spot Size X-direction [mm]	Spot Size Y-direction [mm]
AAA / Varian treatment unit	0.0	0.0
	1.0 if MLC in field	0.0 if MLC in field
Acuros XB / Varian treatment unit	1.0	1.0
	1.5 if MLC in field	0.0 if MLC in field
AAA / Elekta Beam Modulator	2.5	0.0
Acuros XB / Elekta Beam Modulator	2.5	0.0
AAA / Other Elekta treatment units	0.0	0.0
	1.0 if MLC in field	0.0 if MLC in field
Acuros XB / Other Elekta treatment units	1.0	1.0
	1.5 if MLC in field	0.0 if MLC in field
AAA / Siemens treatment units	2.0	2.0
Acuros XB / Siemens treatment units	2.5	2.5

In all cases, fine-tuning of the spot size parameter values can be performed based on matching measurements and calculations.

Eclipse Photon and Electron Algorithms Reference Guide, Dec., 2014, p62

Treatment Planning

Imaging

- Metastatic
 - MRI with Gadolinium
 - T1 post contrast (thin slice)
 - Small non-enhancing lesions may be seen on T2
 - T2 Flair showed peritumoral edema
 - CT Head with contrast
 - If MRI unavailable
 - Combine target delineation
 - AVM
 - CTA, DSA, MRA
 - Trigeminal Neuralgia
 - T1 post, FIESTA

Tre	Treatment Planning				
	Imaging				
	Registration				
	Contouring				
^R x	Prescription				
	Setting up the fields				
	Optimization				
	Plan Evaluation				

TG-54

"MRI contains distortions which impede direct correlation with CT data at the level required for SRS"

TG-117

Use of MRI data in Treatment Planning and Stereotactic Procedures – Spatial Accuracy and Quality Control Procedures

(c)

CT

3T T2-FRFSE

B Zhang et al., Phys. Med. Biol. 55 (2010) 6601-6615

Gradient nonlinearity distortion, Siebert et al, ASTRO 2014

2014 cal impact of geometric distortion of stereotactic references. (a) Stereotactic on in MR. (b) Stereotactic reference deviation in sagittal view (subtraction between CT and MR). (c) Displacement of the internal auditory canal (red contour) between CT and MR as a result of stereotactic reference deviation in MR.

Planning CT

- Slice Size (< 1.5 mm)
 - Spatial resolution of Z axis
 - Thick slices: more partial volume averaging.
- FOV (Pixel = FOV/matrix)
 - Smaller is better
- Body
- Immobilizer / Registration
- Target localization

Uncertainty – TG54

TABLE II. Achievable Uncertainties in SRS

Stereotactic Frame	1.0 mm	1.0 mm
Isocentric Alignment	1.0 mm	1.0 mm
CT Image Resolution	1.7 mm	3.2 mm
Tissue Motion	1.0 mm	1.0 mm
Angio (Point Identification)	0.3 mm	0.3 mm
Standard Deviation of	2.4 mm	3.7 mm
Position Uncertainty		
(by Quadrature)		

Planning CT - IGRT

Bellon et al., J. Radiosurgery and SBRT, 3, (2014)

DRR 3mm - DRR 2mm

FIG. 4. The distribution of net radial errors in locating a point 10.4 cm from the center of the skull, using the positioning results of the simulations.

frequency

Murphy et al., Med. Phys., 26 (2), (1999)

DRR 2mm - DRR 1mm

6000

4000

2000

SAM Question 2.

What is the most appropriate imaging modality for target delineation of brain metastases?

1%	1.	Digital subtraction angiography (DSA)
14%	2.	MRI T2 weighted FLAIR
83%	3.	MRI T1weighted + Contrast
0%	4.	Scout image
<mark>2</mark> %	5.	Computed tomography

What is the most appropriate imaging modality for target delineation of brain metastases?

Answer: 3. – MRI T1 FS + Contrast

Ref: Kathleen R. Fink, James R. Fink, "Imaging of brain metastases" Surgical Neurology International. Vol.4, s209-s219 (2013)

Registration

Treatment Planning

Imaging

Registration

Contouring

Prescription

CT/CT registration

CT/MR registration

- Benchmark Test for Cranial CT/MR Registration
 K. Ulin et al., IJROBP, 77 (5), 1584-1589 (2010)
 - 45 Institutions and 11 software systems
 - Average error: 1.8 mm
 - MR 2.0 mm Thickness, CT 2.5 mm Thickness
 - Manual registration: significant better result

Registration

• FMEA study of surface image guided radiosurgery (SIG-RS)

TABLE IV.	TABLE IV. Top ten failure modes ranked by RPN.							
Donk	Stor	Potential failure modes	Potential cause of failure	Potential effects of failure	0	S	D	RPN
Rank	Step	Potential failure modes	Tailure	Tailure	0	3	D	KPN
1	31. Contour critical	Inaccurate contours	Poor image quality	Excessive dose to	6	8	6	288
	structures		Poor registration	critical structure				
			Insufficient training		J			
1	79. Apply CBCT couch	Inaccurate CBCT-CT	Poor image quality	Geometric miss	6	8	6	288
	shifts	registration	Inattention.				-	• • • •
3	29. Previous tx CT	Inaccurate CT-CT	Failed to save	Retreat previous target.	5	8	7	280
	registered to planning	registration	registration.					
4	CT 39. Review OAR	Critical structure doses	Registration error Inattention	Excessive dose to	5	8	(240
4	statistics	not checked	mattention	critical structure	3	0	6	240
4	29. Previous tx CT	Not done	Inattention	Retreat previous target	5	8	6	240
7	registered to planning	Not dolle	mattention	Retreat previous target	5	0	0	240
	CT							
4	33. Insert Rx and	Contours accidentally	Contours not locked	Underdosing of target	6	8	5	240
	contour target volumes	changed by planner		volume				
7	23. Images labeled with	Incorrect date label	Transcription error	May cause confusion	5	6	7	210
	acquisition date and			and/or affect MD				
	technique			decision making				
8	84. Monitor SIG	SIG system fails to	SIG system failure	Geometric miss	3	8	8	192
	indicated offsets to	detect patient						
	ensure patient position	movement						
	is within tolerance							
9	59. Ensure SRS QA has	SRS QA not checked	Inattention	System out of tolerance	6	6	5	180
	been completed							
0	(Winston–Lutz, etc.) (P)	ICDT OA met sheet 1	Institution	Contain and afterlas	<i>(</i>	6	5	180
9	60. Ensure daily	IGRT QA not checked	Inattention	System out of tolerance	6	6	5	180
	integrated IGRT QA has been performed (P)	Mang	er et al., Me	dical Physics,	42 (5), 2	449-	2461

(2015)

Contouring

J Neurosurg (Suppl) 117:203–210, 2012

Treatment Planning

3

Contouring ₽_X

Reliability of contour-based volume calculation for radiosurgery

Laboratory investigation

LIJUN MA, PH.D.,¹ ARJUN SAHGAL, M.D.,⁴ KE NIE, PH.D.,¹ ANDREW HWANG, PH.D.,¹ ALIAKSANDR KAROTKI, PH.D.,⁴ BRIAN WANG, PH.D.,³ DENNIS C. SHRIEVE, M.D., PH.D.,³ PENNY K. SNEED, M.D.,¹ MICHAEL MCDERMOTT, M.D.,¹ AND DAVID A. LARSON, M.D., PH.D.^{1,2}

¹Department of Radiation Oncology, University of California, San Francisco; ²Washington Fremont Hospital Gamma Knife Center, Fremont, California; ³Department of Radiation Oncology, University of Utah, Salt Lake City, Utah; and ⁴Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Princess Margaret Hospital, University of Toronto, Ontario, Canada

- Tested 6 SRS TPS platforms ullet
- Phantom study shows -3.6-22% vol. variation ullet
- Most of platforms & algorithm overestimated ullet
- Large variation: small target < 0.4 cc, near the ulletend slice

Planning Target Volume

Clinical Investigation

Kirkpatrick et al., IJROBP, 91 (1) 100-108, (2015)

Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

John P. Kirkpatrick, MD, PhD,^{*,†} Zhiheng Wang, PhD,^{*} John H. Sampson, MD, PhD,^{*,†} Frances McSherry, MA,[‡] James E. Herndon II, PhD,[‡] Karen J. Allen, ANP,^{*} Eileen Duffy, RN, OCN,^{*} Jenny K. Hoang, MBBS,[§] Zheng Chang, PhD,^{*} David S. Yoo, MD,^{*} Chris R. Kelsey, MD,^{*} and Fang-Fang Yin, PhD^{*}

Departments of *Radiation Oncology, [†]Surgery, [‡]Biostatistics & Bioinformatics, [§]Radiology, Duke University, Durham, North Carolina

- Randomized Trial to 1-mm versus 3-mm expansion with IG-SRS
- The local recurrence rate was low for both arms (<10% 12 months after SRS)
- Biopsy-proven radionecrosis was more frequently observed in the 3-mm arm
- Suggest a 1-mm margin is appropriate for IG-SRS

Prescription

Treatment PlanningImagingRegistrationContouringPrescriptionSetting up the fieldsOptimizationPlan Evaluation

- Treatment regimens
 - Target volume (RTOG 90-05)
 - Target location
 - Pre-existing edema
 - Pre-existing neurologic deficit
 - Pathology
 - Previous treatment

Beam Geometry

J D Bourland and K P McCollough, IJROBP, 28(2). 471-479, (1994)

- Static , DCA, IMRS, VMAT approach similar solid angle
- Avoid collision
- Reasonable number of beams
- BEV play
- Select isocenter

Treatment Planning

Setting up the fields

B Rx

Multi-met Planning Strategy

Multi-iso approach

- Relatively easier to achieve good plan quality
- Less influenced by setup uncertainty
- Hard to control sum dose

Multi-met Planning Strategy

Base plan approach

- Contribution dose can be considered during the optimization
- Worse plan quality indices as an individual plan

Multi-met Planning Strategy

Single-iso approach

- Need better understanding of planning tools
- Requires accurate patient positioning / monitoring method

IMRS vs. VMAT

JZ Wang et al, Medical Dosimetry 37, 31-36, (2012)

Multiple Metastases

< Island blocking problem>

FIG. 1. Schematic beam-eye-view illustration of MLC blocking for an example case with three lesions. The lesions are projected onto the beam Y-axis vector. The MLC is unable to block the square region.

FIG. 2. The sinogram for the three-lesion case. The shadowed region shows the area where two lesions overlap and an island blocking problem is present. The dashed line represents the gantry angle 140° , where the projections of lesion2 and lesion3 have overlap region.

Kang et al., Medical Physics, 37 (8), 4146-4154 (2010)

Plan optimization

- Treatment PlanningImagingRegistrationContouringContouringPrescriptionSetting up the fieldsOptimizationPlan Evaluation
- Constraints (GTV, CTV, PTV, OARs)
- NTO or Tuning Structures
- MU constraint
- Optimization resolution
- Calc. grid size

Constraints

• TG-101

Sovial	Max vol. (cc)	Aax One fraction		Three fraction		Five fraction			
Serial Tissue		Threshold dose (Gy)	Max point dose (Gy)	Threshold dose (Gy)	Max point dose (Gy)	Threshold dose (Gy)	Max point dose (Gy)	End point	
Optic pathway	<0.2	8	10	15.3	17.4	23	23	Neuritis	
Cochlea			9		17.1		25	Hearing loss	
Brainstem (not medulla)	<0.5	10	15	18	23.1	23	31	Cranial neuropathy	
Spinal cord and medulla	<0.35 <1.2	10 7	14	18 12.3	21.9	23 14.5	30	Myelitis	

- Lens Max. dose <10 Gy (1 fx)
- Normal Brain V10 < 12 cc or V12 < 10 cc
- Cranial Nerves (fifth, seventh and eighth CN)12.5-15 Gy (Flicker et al., IJROBP 2004)

Plan optimization – MU

Normal brain dose

Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis

Giuseppe Minniti^{1,2*}, Enrico Clarke¹, Gaetano Lanzetta², Mattia Falchetto Osti¹, Guido Trasimeni³, Alessandro Bozzao³, Andrea Romano³ and Riccardo Maurizi Enrici¹

Table 1 Summary of tumor characteristics and treatment parameters

parameters	
Parameter	No(%)
number of patients	206
median age	62
sex (F/M)	99/107
no of lesions per patient	
1 lesion	126 (61%)
2 lesions	56 (27%)
3 lesions	24 (12%)
histology	
lung	106 (51%)
breast	38 (18%)
melanoma	34 (17%)
others	28 (14%)
tumor location	
frontal	68 (22%)
parietal	78 (25%)
temporal	62 (20%)
cerebellar	43 (14%)
occipital	45 (15%)
brainstem	14 (4%)
radiosurgical dose (Gy)	
20	118 (38%)
18	120 39%)
15-16	72 (23%)

 V10 and V12 volumes greater than 4.5-7.7 and 6.0-10.9 cc carry >10% risk of symptomatic radiation necrosis , respectively

G Minniti et al, Radiation Oncology 2011, 6:48

0.2-23.7

Multi-met optimization

- Optimize individual target
- Single ISO, multiple prescription targets

Tuning Structures

 Individual target(s) (not the composite PTV_total): lower = 100% of the target to receive 102% of prescription, no upper constraint

- Inner control max dose = 98% of prescription dose
- Middle control max dose = 50% of prescription
- Outer control max dose = 40% of prescription

Table 3	Dosimetric indices	(15 patients with 1-5 targets)			
Patient	Target(s)	Target volume (cm ³)	Conformity index	Homogeneity index	Gradient index ^a
Mean		13.17	1.12	1.44	3.34
Standard	deviation	13.81	0.13	0.11	0.42
Range		0.43-44.68	0.99-1.49	1.19-1.65	2.53-4.13

^a Gradient index (GI) is calculated on per-plan basis, with GI = volume of 50% isodose line divided by the volume of the 100% isodose line.

G. Clark et al., Practical Radiation Oncology 2, 306–313, (2012)

Calculation Grid Size

Chung et al., Phys. Med. Biol, 15, 4841-4856 (2006)

Calculation Grid Size Expected effects for SRS case

- Calculation accuracy
- Max dose
- Conformity Index
- Gradient
- DVH

Plan Evaluation

 Treatment Planning

 Imaging

 Registration

 Contouring

 Prescription

 Setting up the fields

 Optimization

 Plan Evaluation

- Target coverage
 - DVH evaluation
 - Location of hot and cold spots
- Dose to Organ at Risk (OAR)
 - DVH evaluation
- Conformity, Gradient, Homogeneity
- Normal tissue irradiated
- Delivery efficiency
- Number of MU

Gradient

Paddick $GI = PV_{50\%} / PV$

 $\mathsf{PV}_{50\%}$ is the volume that received 50% of the effective prescribed dose, and PV the prescribed dose.

• G. Clark et al. GI = 3.34 ± 0.42 (15 multi-met patients)

Gradient Measurement (GM)

Difference between the equivalent sphere radius of the prescription and half-prescription

→ Normal Brain Dose, V12 or V10

50%

GN

Conformity

RTOG CI = PV / TV

PV = The prescription volume TV = The target volume

Paddick CI = $(TV_{PV})^2/TV \times PV$

TV = Target volume PV = prescription volume TV_{PV} = Target volume within the prescribed isodose cloud

• G. Clark et al : CI = 1.12 ± 0.13 (15 multi-met patients)

• G. Kim et al : $CI = 1.14 \pm 0.18$ (55 multi-met patients)

SAM Question 3.

What should not be used when treatment planning for small size multi-metastases?

1.	High resolution MRI
2.	Co-planar beams
3.	Individual PTV optimization
4.	Smaller calculation grid size
5.	Thin slice planning CT
	2. 3. 4.

What should not be used when treatment planning for small size multi-metastases?

Answer: 2. Use co-planar beams

Ref: Audet et al., Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs, Medical Physics, Vol. 38, No. 11, November 2011

Acknowledgements

- Todd Pawlicki, PhD
- Mariel Conell, CMD
- Jane Uhl, CMD
- Ryan Manger, PhD
- Adam York, PhD
- Kevin Murphy, MD
- Jona Hattangadi, MD
- Parag Sanghvi, MD
- Clark Chen MD PhD