

Strategies and Technologies for Cranial Radiosurgery Planning: Gamma Knife David Schlesinger, Ph.D.

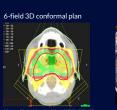
Lars Leksell Gamma Knife Center University of Virginia **Conflicts of Interest**

Research support: Elekta Instruments, AB

Educational objectives

- Introduce the basic physical principles of intracranial radiosurgery and how they are realized in the treatment planning paradigms for Gamma Knife and Linac radiosurgery.
- 2. Demonstrate basic treatment planning techniques.
- 3. Discuss metrics for evaluating SRS treatment plan quality.
- 4. Discuss recent and future advances in SRS treatment planning.

Dosimetric goal of radiosurgery


GK Planning Overview

Treatment Planning Preparation

Treatment Planning Techniques

Treatment Plan Evaluation

Physics Considerations

Relies on differential biology

Relies on differential targeting

Superposition of beams

Model C: 201 beams / isocenter

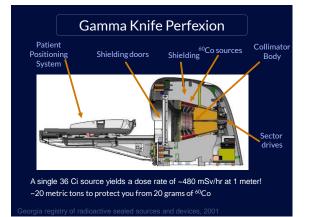
Image courtesy of Elekta, AB

Technical requirement to create many individual small beams led directly to the use of ⁶⁰Co

Spreading the energy out generates the steep dose gradients

Stereotactic targeting

Image courtesy of Elekta


The frame defines the coordinate system and immobilizes patient Coordinate system origin is to the right, superior, posterior of the patient's head

- All coordinates are positive no sign mistakes
- Center of the system is considered to be (100, 100, 100) (mm)

Gamma Knife model C / 4C

Kondziolka, et al., Gamma Knife Radiosurgery: Technical Issues, Textbook of Stereotactic and

Goal for treatment planning

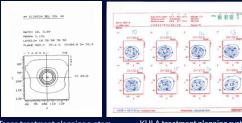
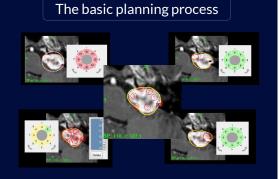
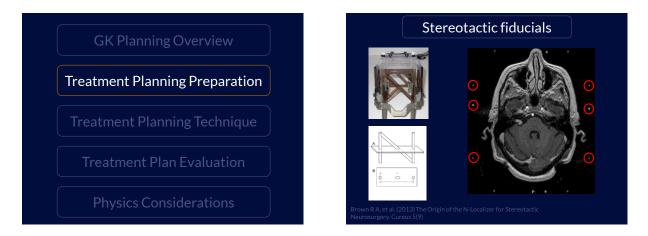


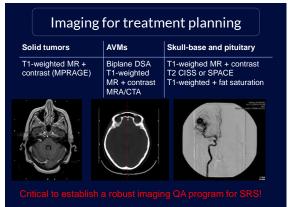
Image courtesy of Elekta Instruments, AB

Create instructions to move the patient relative to the isocenter of the Gamma Knife so the focus point of the beams creates a conformal dose distribution.

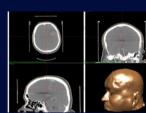

Style of treatment planning reflects the requirement to manage 192 (or 201) beams at a time.

Evolution of treatment planning

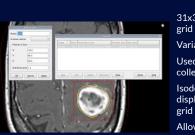



Tango treatment planning system Buenos Aires, plan circa 1989

KULA treatment planning system Elekta, AB, plan circa 1994


Total dose distribution is a sum of one more isocenters, or "shots" Plans are classically prescribed to the 50% isodose line

External head contour



Manual head contour measurement

Semiautomatic segmentation from CT

Used to calculate SSD and depth of each beam

Also used to determine potential collisions between patient and helmet or side of collimator

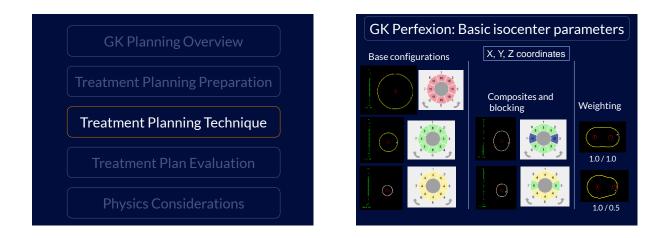
Targets –a.k.a. "dose matrices"

31x31x31 calculation grid

Variable resolution

Used to group a collection of shots

Isodose curves displayed only in dose


Allows separate prescription per target_____

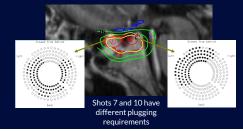
Uncertainties with large dose matrices

4mm isocenter

C	Grid spacing	Max. Error (%)	Mean Error (%)			
	0.5 mm	1.1	0.30			
	1.0 mm	3.8	0.84			
	1.5 mm	7.5	1.7 3.3 7.8			
	2.0 mm	15.0				
	2.5 mm	35.1				

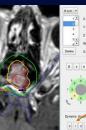
Non-published data - Ian Paddick, MSc MIPEM, Medical Physics Ltd.

Single target vs all target modes

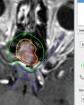

Single target mode: only shots from current target contribute to isodose lines shown. Dose in % of maximum dose in target. All target mode: All shots in plan from all targets contribute to

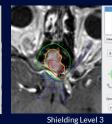
isodose lines shown. Dose in units of Gy. For targets that are close together, there can be significant

differences!

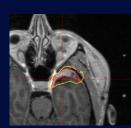

Combinations of plug patterns are applied to one or more isocenters Different isocenters will have different optimal plugging patterns Plugging is a manual, time-intensive process!

Protecting critical structures (Perfexion)


Define risk structures near OARs you wish to shield Planning system will block sectors with beams intersecting risk structures

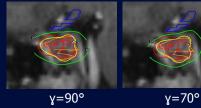

Shielding to reduce dose to optic pathway

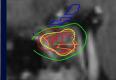
Shielding Level 1



Shielding Level 2

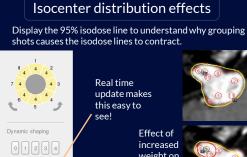
Shielding on Perfexion is automated Overuse of shielding can significantly increase beam time



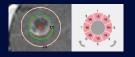

Plan without shielding

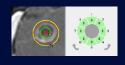
Real time update X Outline all shots

Plan with shielding


Use of the gamma (head) angle

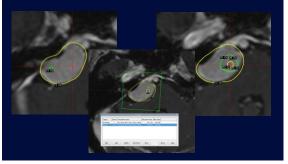
Gamma angle rotates head around X (left/right) axis Manual technique usually used to avoid collisions of frame or patient with Gamma Knife


Sometimes can be used to lower dose to critical structures


weight on shot 9

Superimposing shots

Superimposing and weighting shots of different sizes can give you all of the sizes in-between


16 mm isocenter



16 mm isocenter (weight 1.0) 8 mm isocenter (weight 2.0)

"Dose painting" hotspots

Use nesting dose matrices to manually place hotspots

"Inverse" Planning

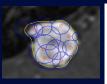
3**949**.0 285 Automatically fills a volume with isocenters

Optimizes against plan metrics such as coverage, conformity, dose falloff, and beam time

Does NOT use dose/volume constraints

Plan can be manually adjusted via typical forward-planning techniques

Extend System multifraction GKRS


Target \	Shots	Prescription done	Fractions	Occe per fraction	Ael point dose	Max dose
8 mening2	2	20.0 Gy at 50 % (40.0 Gy at 100%)	4	5.0 Gy	40.0 Gy	40.0 Gy

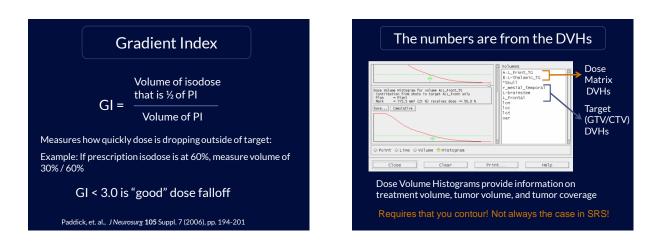
Treatment planning follows same basic process as single-fraction SRS

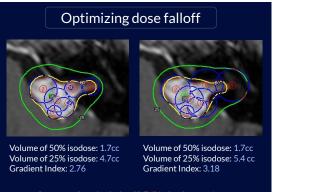
Can set total dose or per-fraction dose + number of fractions

Delivery of each fraction managed at control console

In the end a plan boils down to this....

Run-Step	Shot	X [mm]	Y [mm]	Z [mm]	Collimator [sectors 1-8]						Time [min]	Notes		
1-1	212	74.8			8	8	8	8	8	1	8	8	2.52	
1-2	2.4	76.0	80.7		4	4	-4	-4	- 4	-4	- 4	4	2,85	
1-3	A7	76.9	76.7		4	4	4	4	-4	4	- 4	4	2,85	
1-4	3.9		80.7	123,8	4	8	8	8	-4	з	в	В	4,25	
1-5	A5	73.8	84.5		3	3	4	-4	-4	-4	- 4	3	6,66	
1-6	314	69.9	80.5	123.9	8	8	- 6	- 6	- 6	- 6	- 6	8	2.59	
	1.3	67.6	84.4	121.5	4	4	4	4	-4	4	- 4	4	1,97	
1-8	A8	61.7	83.9	121.4	з	4	4	4	в	в	в	В	9,18	
1-9	316	64.3	83.4	120.4	4	4	4	4	-4	4	- 4	4		
1-10	A15	70.1	81.2	117,6	4	8	8	8	- 4	4	- 4	4	2,74	
1-11	12	70.3	76.4	114.8	4	4	- 6	-4	-4	-6	- 4	4	2,81	
1-12	A11	67.1	76,7	119.2	8	8	8	8	8	8	8	8	2,56	
	A.6	67.2		118.5	4	4	4	4	-4	4	- 4	4	2,79	
1-14	310		72.4		4	4	4	4	- 4	4	- 4	4	2,82	
1-15	A12	69.4	74.0		8	8	8	8	8	8	8	в	2.57	
1-16	A1	72.3	76.3	124.2	8	8	8	8	8	8	8	8	2.59	


A plan is a list of coordinates, collimator configurations, and dwell times. Each coordinate is a point in the patient's head that is moved to machine isocenter for the specified dwell time/collimator configuration.


Total # beams = 192 (or 201) x number of locations (unless sectors are blocked).

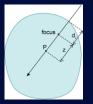
Conformity Index

Perfexion collimator system

Beam channels are not all the same source to focus distance Sources are angled relative to the collimators - 2D beam profiles

4mm / 8mm / 16mm and blocked collimator positions

Also a home position when not in use



15 base beam configurations

Collimator	Output factor	Attenuation constant (1/mm)	Scaling distances (mm)	Virtual source-to focus distance (mm)		
P4_1	0.799	0.00678	377	521		
P4_2	0.815	0.00704	380	546		
P4_3	0.792	0.00690	387	533		
P4_4	0.725	0.00712	398	595		
P4_5	0.663	0.00698	420	607		
P8_1	0.957	0.00658	374	431		
P8_2	0.946	0.00660	382	437		
P8_3	0.901	0.00681	394	468		
P8_4	0.808	0.00665	408	480		
P8_5	0.730	0.00680	433	522		
P16_1	0.961	0.00694	381	481		
P16_2	1	0.00685	379	459		
P16_3	0.986	0.00675	383	455		
P16_4	0.920	0.00690	389	488		
P16 5	0.851	0.00694	409	519		

TMR10 - The basic dose model

 $\dot{D}_i(P) = \dot{D}_{calibration,16} \times \frac{1}{192} \times of_i \times e^{-1}$

d_i: depth of beam i z: depth from focus to calc point

 $R_{vsf,i}$: virtual source to focus distance for beam i

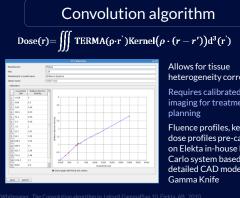
of; output factor for beam i μ_0 : attenuation coefficient of primary photon fluence (0.00633mm⁻¹)

 $(1+\frac{z}{R_{vsf,i}})$ $\frac{z}{z}$)²

 μ_{i} : virtual attenuation coefficient of beam i (contribution of photon-electron interactions at z) $R_{\it calibration}$ source to focus for calibration phantom

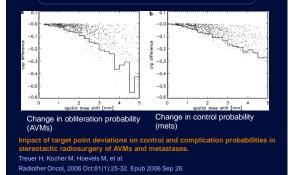
 $\dot{D}_{calibration,16}$: base dose rate

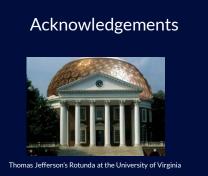
Important TMR 10 approximations


Treats the brain as a homogeneous ball of water no heterogeneity correction

Ignores build-up region effects

Uses a poor approximation of the skull shape


These are all minor issues inside the brain


FAST – works well with Gamma Knife workflow

heterogeneity correction Requires calibrated CT imaging for treatment Fluence profiles, kernel and dose profiles pre-calculated on Elekta in-house Monte-Carlo system based on detailed CAD models of

Always be aware of uncertainty!

