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Overview

" How We Started ?
®= The Initlal Framework
" Going Back to Clinic

" What's next?



Building Planning Knowledge Models

* How We Started ?
» Learning Curve, Quality, Consistency
» Standardization, Automation, Integration



Basics Of Knowledge-Based Planning (KBP)
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Basics Of Knowledge-Based Planning (KBP
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Basics Of Knowledge-Based Planning (KBP)
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Basics Of Knowledae-Based Plannina (KBP)

‘Jf_- Duke University Medical Center — Radiation Oncology

IMRT Constraints

Patient Name

PatientlD [ |

Treatment site

Ft pelvis

Imaging sets

Fusion {YIN)

Prescription

Volume (%)

Target Margin Prescription

PT1 1.8 10 584Gy

Constraints

OARs Dose Yolume {abseolute or %)

ALARA for all

Mo hot spots in bladt&

recturm, small bowel

Daon't push as much an
fernur- prefer to meet

bowelbladder




Building Planning Knowledge Models

"= The Initlal Framework

» Portable: Cases/Plans => Features
» Systematic: Knowledge =>Machine Learning



Building Knowledge

Database of Expert

d Knowledge &
eage . Treat tC
- KBRS PET Desi gn —
Base
Training Patient & Plan Dose Parameter

Design Features Features

Input Features Output Features
X Y.

Machine Learning
Knowledge Base
Y1=F1(X)
Y2=F2(X)

Knowledge Base Application

Dose Parameter

Feature
New Patient Characterization Y=f(X) Features
Xnew Ynew




Building Knowledge Models

= Platform Design

Knowledge Base Application

Feature Dose Parameter

New Patient Characterization Y=f(X) Features
Xnew Ynew




Building Knowledge Models

* Feature Organization

" Database of )
Expert
Knowledge &
Treatment

blscye-an \__ Cases

Based ’
High Order

Feature
Extraction

Institutional

Zhu et al, Med Phys 38:719-726, 2011
Yuan et al, Med Phys 39:6868-6878, 2012



Building Planning Knowledge Models

= Systematic Modeling of Knowledge

» Machine learning, Descriptive statistics, Pattern
classification

Database of Expert
Knowledge &
Treatment Cases

L L

Feature
Extraction

Multi-
regression

Neural
Network

Model
Support Training
Vector Descriptive
Regression statistics




Example of Bladder DVH Modeling

case 1 case 2 case 3 case 4 case 5 case 6

0 50 100 50 100 50 100 50 100 50 100 50 100

case 7 case 8 case 9 case 10 case 11 case 12

0 50 100 50 100 50 100 50 100 50 100 50 100

0 50 100 50 100 50 100 50 100 50 100 50 100

case 19 case 20 case 21
O ks s nm s s e G S A A B L S A S A B S A B A A e

B0 Al N s o ST

\

0 50 100 50 100 50 100 50 100 50 100 50 100
Zhu et al, Med Phys 38:719-726, 2011
Yuan et al, Med Phys 39:6868-6878, 2012




Building Planning Knowledge Models

® Going Back to Clinic

» Knowledge Model Guided Treatment Planning



El—

1. Generate a new model

* Generate a new model 1n “Model Configuration”

+ p-r =
F P— E o

DVH Estimation Model Properties

No clinical description atta=* _.

No tech a1 description attached

Other

Add Model Structure

Structure 1D larget  Swutiuie vouco

Cancel

Structure Code Selection

Label

Anal Canal

Anal Sphincter External
Anal Sphincter Internal
Anal Sphincter Internal and External
Aorta

Applicator

Artifact

Aftrium Left

Attrium Right

Axillary nodes Left

Other

Head/Meck
Thorax
Abdomen
Pelvis
Other

Codes found: 344

Code
15703
21930
15710
AnalSphinctes
3734
28999
11296
7097
7096
224500

Scheme
FMA
FMA
FMA
99VMS_STRUCTCOD
FMA
RADLEX
RADLEX
FMA
FMA
FMA

Cancel




2. Add plans to the model

* Extract high quality plans into the model in “External Beam

[ Add Plan Planl to DVH Estimation Model - 11886, Anonl3 Duke-Prostate-001)

Planning” |

| Model ID

File Edit View Insert | Planning | Tools  Window ! Duke-Pelvic Pelvis Monday, May 05,
E g s i ﬁ Arc Geometry Tool... Ctrl+F7
Ecli Contouri Optimization 3 :
(Ecipe Contourn) (e | -
: Dose Calculation 3 No
- Add Plan to a DVH Estimation Madel No

L e dukeuser? Monday, May 05, 2014 7-11-43 PM

———— Prostate Low risk, high risk, anal rectal

Create Partial Treatment Plan...

Plan Naormalization...

gﬁé testarc
g;g testarc2shif Isodose Levels...

54000 Gy

Plan Structure ID ( 25 Type Model Structure ID {

Bladder () ORGAN Bladder (15900)

BODY () EXTERNAL

bowel region () ORGAN

fiducials () ORGAN

Lt Fem Head ()

Penile Bulb ()

prostate (}

PTV54 () BTV High {PTV High)
PTVT6 ()

Rectum () Rectum (14544)
Rt Fem Head {)

sV




3. Model training

* In “Model Configuration”, select the plan to include in the
training and then click “Train”.

Quicklinks

Q i @ A

i 11886, Anon1370 Q, No Current Activity

2 = B ZJ %

Duke-ProAnal (7]

13.5.15 %
Pelvis Patient ID/Course |ID/Plan 1D In Model

‘SZS Duke-Prostate-001/C1/1PTV54 54000 Gy
dukeuser! Tuesday, May 06, 2014 12:41:43 AM Duke-Prostate-001/C1/2PTV76 22000 Gy

Duke-Prostate-002/C1/1PTV54 54000 Gy
Duke-Prostate-002/C1/2PTV76 22000 Gy
Duke-Prostate-003/C1/IMRT-Primary 54000 Gy
Duke-Prostate-003/C1/IMRT-Boost 22000 Gy
Duke-Prostate-004/C1/IMRT: Primary 54000 Gy
Duke-Prostate-004/C1/IMRT: Boost 22000 Gy
Duke-Prostate-006/C1/IMRT: Primary 54000 Gy
Duke-Prostate-006/C1/IMRT: Boost 20000 Gy
Duke-Prostate-007/C1/IMRT-PRI 54000 Gy

Plan Prescription Structure Matching Include Extracted
13515
13515
13515
13515
13515
13515
13515
13515
13515
13515
13515

13515

Publishing Log... Edit Model and Structures.

Training Log

@~ SN EWN =D

Target ID Vol [%] Priority gEUD a

Yes PTVp
Upper
Lower

Bladder

(PTVp)

(15900}

0.0
100.0

1050 %
990 %

Generated

Generated

Duke-Prostate-007/C1/IMRT-BOOST 22000 Gy

Duke-Prostate-009/C1/IMRT-Primary1
Duke-Prostate-009/C1/IMRT-Boost

Malen Mienndnda (A4 04 ALINT- DO

54000 Gy
20000 Gy

cannn

13515
13515

49 Cac




4. DVH Estimation

* In “Optimization” panel, “DVH Estimation” can be invoked to
generate DVH estimates.

- N b ¥ & AddgEUD~

Volfcm®] | Vol[%] WDosefcyy | Acmal

Priority gEUD a Dose [%]

Dose[Gy] _ 370

PTvh4 1329
Upper 27
Upper 0.0
Lower 1316
Lower 1329

Bladder 96.6
Upper 64.1
Upper 540
Upper 442
Upper 0.0
Upper 8.5

Lt Fem Head

Volume [%)]

Upper
Rectum

Upper

Upper

Upper

Upper 0.0

Upper 25
Rt Fem Head 2043

Upper 0.0
BODY 16358.3 2t o
bowel region 146.3 Dose [Gy]
fiducials 0.3
Penile Bulb 46

prostate 315

PTVTG 691



Knowledge Model-based HN Planning

Dicom Data Import

Case Name PTV Name

Dicom File Directory

E\r1_ui_DVH_modelieclipse-exporth Select Directory

Program Directory

E\r1_ui_DVH_model Select Directory

Get DVH Constraint ’







Clinical Application of Knowledge Models - Integration

= Cross-institution Knowledge

» If you believe best planning knowledge is shared among
all planners

» LUNG IMRT Pilot Study By RTOG/NRG
« /1 Cases
e 3 Institutions



Clinical Application of Knowledge Models - Integration

Mean Median Min Max
Prescriptions (Gy) 67 64 40 74
Institution 1 Institution 2 Institution 3

Volume (cm3) mean 421 595 512

median 343 519 379

min, max 62,1132 76,1132 175, 1161
Location (side) Total 45 10 16

Left/Left-Medial 18 4 5

Right/Right-Medial 21 6 10

Medial 6 0 1




Clinical Application of Knowledge Models - Integration

Circle: Training Plan Cross: Validation Plan
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Clinical Application of Knowledge Models - Integration

Contralateral
Lung DVH

=— Model

=— Plan

~J
an

9]
o

Volume (%)

N
an

0
0 25 50 75

~-
0

Institution 2 Not contributing to model

0 25 50 75

100 100

75 75

50 50

25 25
\~~

0 0

0 25 50 75

0 25 50 75

100

75

50

25

0
0 25 50 75

Institution 3  Contributing to model

Dose (Gy)

100

75

50}

25

0 -
0 25 50 75

A

Dose (Gy)

100
75
50
25
0 e
0 25 50 75
Dose (Gy)

100
75
50
25
0
0 25 50 75
Dose (Gy)



Cross-Modality Knowledge Base

= Cross-Modality Knowledge

= If you believe best planning knowledge is independent of treatment
modality

Institution A Institution B

7-8 min delivery time 7-8 min delivery time

Delivery system: Varian IMRT Delivery system: Tomotherapy

Planning system: Eclipse Planning system: Tomotherapy
— Multiple plans (one plan for 1 PTV) — 1 plan (one plan cover all PTVs with
— 40-50 Gy and 60-70 Gy diff. daily doses)

— 54.25 Gy and 70 Gy
« ~60 head-and-neck cases

e ~60 head-and-neck cases

DUKE University Radiation Oncology Lian et al, Med Phys 40:121704, 2013



Cross-Institution Knowledge Base

Parotid DVH

100 1 T LI | |

Tomotherapy Model —— Actual Clinical DVH
= Predicted DVH by TomoTherapy Model |

vs. IMRT Model . " S Predicted DVH by FG-IMRT Model

vs. Actual Plan DVH 80

50F

40f

Percent volume (%)

30F

20F

70

DUKE University Radiat =~

T T T T -




Other Knowledge Models: Dose Models

= In Spine SBRT, dose
distributions in cord
are highly correlated
with tumor contour
shapes

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015




Other Knowledge Models: Dose Models

= Compute correlation between tumor contour shapes and cord
dose distributions

= Use learned correlations to predict voxel-level dose distributions

Correlation

I

F 2

~ Contourspace - Dose space |

Liu et al, PMB 60:N83-N92, 2015



Other Knowledge Models: Dose Models

= Active Shape Model

= Align the reference tumor contours and all other contours
using the iterative closest point (ICP) algorithm

DUKE University Radiation O

Liu et al, PMB 60:N83-N92, 2015



Other Knowledge Models: Dose Models

Active shape models

m PCA analysis of a set of aligned tumor contours

Distance

5.00

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015



Other Knowledge Models: Dose Models

= Optical Flow Dose Distribution Model

= Mmeasures dose variance between a reference image and any other
images within the training dataset

Optical Flow

Reference Registration

Image

B ‘ 2
lI’((I(x+ux,y+u Jg+1)-1(x,y, +|Vu,| )
Inten81ty constraint Smoothn;sr constraint

+a(VI(x+u, V+uU d+1)— VI(xvt)) dxdv

DUKE University Radlat-lon—Oncolog-y—\,

Intensity constraint




Other Knowledge Models: Dose Models

= Active optical flow dose distribution model

= PCA analysis of a sequence of optical flow fields

Mean Dose

3

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015



Other Knowledge Models: Dose Models

= Machine Learning

= PTV contour space‘ ’ cord dose space

DUKE University Radiation Oncology

Liu et al, PMB 60:N83-N92, 2015



Other Knowledge Models: Dose Models

= Modeled vs clinical plan DVH

- ol — Clinical || [ ~ Clinical |]
B =~ Modeled ~— Modeled
@) st
8 2\0, 60 - 60 -
o o g
m E§ 45 1 § s
© 3

o |
58" ”
=)
— 15
)
D- N

Jo . s - S0 25 0 s 0 —_—
Relative Dose (%) Relative Dose (%)
DUKE University Radiation Oncology
Liu et al, PMB 60:N83-N92, 2015




Clinical Application of Knowledge Models - Integration

* Rapid Learning Framework
= Multiple Knowledge Resources
Database of Expert
Knowledge &
Treatment Cases

L L

Feature
Extraction

HN Trade-
off Model

Beam Angle
Model

Model

Multi-criteria /[ Training
Optimization
e DVH Model




Clinical Application of Knowledge Models - Integration

= Lung IMRT Model as A Rapid-learning Show Case

» DVH Model + Beam Angle Model
100 Lung Cases
« All co-planar beams (best clinical knowledge)
* Ignore non-planar plans (clinical knowledge sparse)



Phase 1 : Class Solution

= Stepl: Define distance between two beam bouquets
= Step2: Classify beam configuration using clustering analysis

= Step 3: Extract standard bouquets

DUKE University Radiation Oncology




Phase 1: Class Solution - Beam Bouqguet Atlas

DUKE University Radiation Oncology




Clinical Class Solutjon Bouqguets

100

Case #12 DVHs

 Esophagus  PTV.

Clinical plan: solid

S_pinal Cord. Beam Bouquet plan: dashed

Volume (%)

T aNs -

0 10 20

DUKE




Phase 1 : Class Solution
Plans Using Beam Bouquets VS. Clinical Plans for
20 Validation cases

Volume (%)

0 3
50 75 0 25

Dose (Gy)

-l ung and PTV Esophagus =—Heart Spinal Cord

Clinical plans: solid Plans using templates: dashed




Phase 2: From Class Solution to Patient
Specific Solution

= Anatomy variation always happens in clinical treatment planning
= Reflects clinical application of knowledge

= Natural progression of knowledge application

DUKE University Radiation Oncology




Clinical Application of Knowledge Models - Integration

= Correlation between the anatomical features and beam angle
configurations learned by supervised classification method

25

Anatomical
Features and Beam
Configuration
Correlation

- >N
T T >

3
T

[=]
T

Center of Mass Y

1
—
T T

DUKE University Radiation Oncology




Clinical Application of Knowledge Models - Integration

= Lung IMRT Model as A Rapid-learning Show Case

>

» Extend Knowledge Models to Other Thorax Cases (large
esophageal case)



Phase 2: From Class Solution to Patient
Specific Solution

= Example case: esophagus tumor extending from
neck to abdomen

= Separate fields, even isocenters, may be needed to
treat different parts of the tumor in superior-inferior
direction

= Multiple beam configurations in one plan

DUKE University Radiation Oncology



Phase 2: From Class Solution to Patient
Specific Solution

IMRT_tryd - Unapproved - Transversal - CT_09Sep2014

M =) - CT_09Sep2014

T

DUKE University Radiation Oncology




Axial CT Slices




Phase 2: From Class Solution to Patient
Specific Solution

Clinical Plan Model Plan

DUKE University Radiation Oncology




Phase 2: From Class Solution to Patient
Specific Solution

Clinical Plan Model Plan

DUKE University Radiation Oncology




Phase 2: From Class Solution to Patient
Specific Solution

Liver

260 \ \_ Clinical

ﬂ N
T N Auto™\

DUKE University Radiation Oncology




Clinical Application of Knowledge Models - Integration

= Lung IMRT Model as A Rapid-learning Show Case

» Extend Knowledge Models to Non-coplanar Cases

* Clinical knowledge about non-coplanar beam angles
IS sparse, immature

« Extend the knowledge learned from co-planar beam to
non-coplanar beam



Phase 3: Progressive Modeling
- From Coplanar to Non-coplanar Beams

+90° Inferior

Out-of-plane Angle

o0 Superior
In-plane Angle

black circle: clinical angles -
white diamond: knowledge driven angles




Phase 3: Progressive Modeling
- From Coplanar to Non-coplanar Beams

Clinical Plan Model Plan

DUKE University Radiation Oncology




Phase 3: Progressive Modeling
- From Coplanar to Non-coplanar Beams

Clinical Plan Model Plan

DUKE University Radiation Oncology




Summary

= Benefits of Knowledge Modeling: Clinical

» Learning Curve, Quality, Consistency
» Standardization, Automation, Integration

= Benefits of Knowledge Modeling: Institutional
» Systematic, Objective
» Integrated Refinement and Evolution

= Benefits of Knowledge Modeling: Future
» Feature Based Knowledge for Big Data Research
» Standardization (Evidence-based) and Optimization (Personalized)



SAM Questions

Treatment planning knowledge models are:

3% a. Confined to a single institution

90% . Applicable to multiple modalities
6% C. Useful for only IMRT

1% d. Physician Specific

0% €. Useable only with Monte Carlo-based dose calculation algorithms



SAM Questions

= 1. Treatment planning knowledge models are:

Confined to a single institution

Applicable to multiple modalities

a.

b

c. Useful for only IMRT
d. Physician Specific
e

Useable only with Monte Carlo-based dose calculation algorithms

= Answer: b
= Reference:
» Lian et al, Modeling the dosimetry of organ-at-risk in head and neck IMRT

planning: An inter-technique and inter-institutional study, Medical Physics 2013,
40(12)



SAM Questions

The treatment planning knowledge that we can model include

0% a. incident beam angle selection
1% . multiple OAR structures

0% C. multiple PTV prescriptions
1% d. DVHs of OARs

97% €. All the above



SAM Questions

= 2. The treatment planning knowledge that we can model include

a.
b.
C.
d.
e.

= Answer: e

incident beam angle selection
multiple OAR structures
multiple PTV prescriptions
DVHs of OARs

All the above

= Reference:

>

>

‘77

Yuan L, Wu QJ, Yin F, LiY, Sheng Y, Kelsey CR, Ge Y. Standardized beam bouquets
for lung imrt planning. Physics in medicine and biology 2015;60:1831-1843.

Liu J, Wu QJ, Kirkpatrick JP, Yin FF, Yuan L, Ge Y. From active shape model to active
optical flow model: A shape-based approach to predicting voxel-level dose
distributions in spine sbrt. Physics in medicine and biology 2015;60:N83-N92.

Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the
factors which affect the interpatient organ-at-risk dose sparing variation in imrt plans.
Med Phys 2012;39:6868-6878.



SAM Questions

The organ sparing capability predicted by the knowledge
model is

13% &. The average value of the sparing in the database

15% ). Interpolated among a few similar cases

6% C. Independent of prescription dose

1%  d. Only valid for maximum dose
e

Patient specific, based his/her anatomy and physician’s
prescription

65%



SAM Questions

= 3. The organ sparing capability predicted by the knowledge model is

The average value of the sparing in the database

Interpolated among a few similar cases

Independent of prescription dose

Only valid for maximum dose

Patient specific, based his/her anatomy and physician’s prescription

® Qoo

= Answer: e
= Reference:

» Yuan L, GeY, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the
factors which affect the interpatient organ-at-risk dose sparing variation in imrt
plans. Med Phys 2012;39:6868-6878.
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