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Overview 

 How We Started ? 

 The Initial Framework 

 Going Back to Clinic  

 What’s next? 

 



Building Planning Knowledge Models 

 How We Started ? 

 Learning Curve, Quality, Consistency 

 Standardization, Automation, Integration 

 The Initial Framework 

 Going Back to Clinic 

 What’s next? 

 



Basics Of Knowledge-Based Planning (KBP) 
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Building Planning Knowledge Models 

 How We Started ? 

 The Initial Framework 

 Portable: Cases/Plans => Features 

 Systematic: Knowledge =>Machine Learning 

 Going Back to Clinic 

 What’s next? 

 



Building Knowledge Models 

 Platform Design 
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Building Knowledge Models 

 Platform Design 

New Patient 
Feature 

Characterization 
Xnew 

 Dose Parameter 
Features 

Ynew 
Y=f(X) 

Knowledge Base Application 



Building Knowledge Models 

 Feature Organization 

Database of 

Expert 

Knowledge & 

Treatment 

Cases 

Feature 
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Institutional 

Distance-
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Volume-
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High Order 

Zhu et al, Med Phys 38:719-726, 2011  
Yuan et al, Med Phys 39:6868-6878, 2012   



Building Planning Knowledge Models 

 Systematic Modeling of Knowledge 

Machine learning, Descriptive statistics, Pattern 

classification 
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Example of Bladder DVH Modeling 

 

Zhu et al, Med Phys 38:719-726, 2011  
Yuan et al, Med Phys 39:6868-6878, 2012   



Building Planning Knowledge Models 

 How We Started ? 

 The Initial Framework 

 Going Back to Clinic 

 Knowledge Model Guided Treatment Planning 

 What’s next? 

 



1. Generate a new model 

• Generate a new model in “Model Configuration” 

Structure 

name in the 

model 



2. Add plans to the model 

• Extract high quality plans into the model in “External Beam 

Planning” 

Model name 

Rx dose 

Match organ name 

with structures in 

the model 



3. Model training 

• In “Model Configuration”, select the plan to include in the 

training and then click “Train”. 



4. DVH Estimation 

Fixed for 

PTV 

Predicted 

by model 
Dose Volume constraints and 

priorities can be customized  

• In “Optimization” panel, “DVH Estimation” can be invoked to 

generate DVH estimates. 



Knowledge Model-based HN Planning  



Using IMRT Knowledge Model For VMAT 



Clinical Application of Knowledge Models - Integration 

 
 Cross-institution Knowledge  

 If you believe best planning knowledge is shared among 

all planners 

 

 LUNG IMRT Pilot Study By RTOG/NRG 

• 71 Cases   

• 3 Institutions 

 



Clinical Application of Knowledge Models - Integration 

 

                 Mean Median Min Max 

Prescriptions (Gy) 67 64 40 74 

    Institution 1 Institution 2 Institution 3 

Volume (cm3) mean 421 595 512 

median 343 519 379 

min, max 62, 1132 76, 1132 175, 1161 

Location (side) Total 45 10 16 

Left/Left-Medial 18 4 5 

Right/Right-Medial 21 6 10 

  Medial 6 0 1 

 

 



Clinical Application of Knowledge Models - Integration 

Circle: Training Plan           Cross: Validation Plan 
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Clinical Application of Knowledge Models - Integration 
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Cross-Modality Knowledge Base 

 Cross-Modality Knowledge  

 If you believe best planning knowledge is independent of treatment 

modality 

 

Institution A 

• 7-8 min delivery time 

• Delivery system: Varian IMRT 

• Planning system: Eclipse 

• Sequential Boost  
– Multiple plans (one plan for 1 PTV) 

– 40-50 Gy and 60-70 Gy 

• ~60 head-and-neck cases  

 

 

 

Institution B 

• 7-8 min delivery time 

• Delivery system: Tomotherapy 

• Planning system: Tomotherapy 

• SIB 
– 1 plan (one plan cover all PTVs with 

diff. daily doses) 

– 54.25 Gy and 70 Gy 

• ~60 head-and-neck cases 

 

 

Lian et al, Med Phys 40:121704, 2013   



DUKE University Radiation Oncology 

Cross-Institution Knowledge Base 

Parotid DVH 

Tomotherapy Model 

vs. IMRT Model  

vs. Actual Plan DVH  
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Other Knowledge Models: Dose Models 

Contours Dose 

 In Spine SBRT, dose 

distributions in cord 

are highly correlated 

with tumor contour 

shapes 

Liu et al, PMB 60:N83-N92, 2015   



DUKE University Radiation Oncology 

Other Knowledge Models: Dose Models 

 Compute correlation between tumor contour shapes and cord 

dose distributions 

 Use learned correlations to predict voxel-level dose distributions 

 

Contour space Dose space 

Correlation 

Liu et al, PMB 60:N83-N92, 2015   



DUKE University Radiation Oncology 

Other Knowledge Models: Dose Models 

 Active Shape Model 

 Align the reference tumor contours and all other contours 

using the iterative closest point (ICP) algorithm 

 

Liu et al, PMB 60:N83-N92, 2015   



DUKE University Radiation Oncology 

Other Knowledge Models: Dose Models 

 Active shape models 

 PCA analysis of a set of aligned tumor contours 

 

Mean Shape -3λ1 3λ1 

Liu et al, PMB 60:N83-N92, 2015   



DUKE University Radiation Oncology 

Other Knowledge Models: Dose Models 

 Optical Flow Dose Distribution Model 

 measures dose variance between a reference image and any other 

images within the training dataset 

Optical Flow 

Registration Reference 

Image 
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Other Knowledge Models: Dose Models 

 Active optical flow dose distribution model 

 PCA analysis of a sequence of optical flow fields 

Mean Dose -3λ1 3λ1 

Liu et al, PMB 60:N83-N92, 2015   
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Other Knowledge Models: Dose Models 

 Machine Learning 

  PTV contour space                  cord dose space 

 

 

Liu et al, PMB 60:N83-N92, 2015   
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Other Knowledge Models: Dose Models 

 Modeled vs clinical plan DVH 
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Liu et al, PMB 60:N83-N92, 2015   



Clinical Application of Knowledge Models - Integration 

 
 Rapid Learning Framework 

 Multiple Knowledge Resources  

 Database of Expert 

Knowledge & 

Treatment Cases 

Feature 

Extraction 

Model 

Training 

Beam Angle 

Model 

Multi-criteria 

Optimization 

Model 

HN Trade-

off Model 

DVH Model 



Clinical Application of Knowledge Models - Integration 

 
 Lung IMRT Model as A Rapid-learning Show Case 

 DVH Model + Beam Angle Model 

• 100 Lung Cases   

• All co-planar beams (best clinical knowledge) 

• Ignore non-planar plans (clinical knowledge sparse) 

 



DUKE University Radiation Oncology 

Phase 1 : Class Solution 

 Step1: Define distance between two beam bouquets 

 Step2: Classify beam configuration using clustering analysis 

 Step 3: Extract standard bouquets 
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Phase 1: Class Solution - Beam Bouquet Atlas 
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Phase 1 : Class Solution 
Plans Using Beam Bouquets  VS. Clinical Plans for 
20 Validation cases 

Lung and PTV       Esophagus       Heart       Spinal Cord 
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Clinical plans: solid    Plans using templates: dashed 
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Phase 2: From Class Solution to Patient 
Specific Solution 

 Anatomy variation always happens in clinical treatment planning 

 Reflects clinical application of knowledge 

 Natural progression of knowledge application 
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PTV 

Clinical Application of Knowledge Models - Integration 

 Correlation between the anatomical features and beam angle 

configurations learned by supervised classification method 
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Clinical Application of Knowledge Models - Integration 

 
 Lung IMRT Model as A Rapid-learning Show Case 

 DVH Model + Beam Angle Model 

• 100 Lung Cases   

• All co-planar beams (best clinical knowledge) 

• Ignore non-planar plans (clinical knowledge sparse) 

 Extend Knowledge Models to Other Thorax Cases (large 

esophageal case) 
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Phase 2: From Class Solution to Patient 
Specific Solution 

 Example case: esophagus tumor extending from 

neck to abdomen 

 Separate fields, even isocenters, may be needed to 

treat different parts of the tumor in superior-inferior 

direction 

 Multiple beam configurations in one plan 
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Phase 2: From Class Solution to Patient 
Specific Solution 
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Phase 2: From Class Solution to Patient 
Specific Solution 

Clinical Plan Model Plan 
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Phase 2: From Class Solution to Patient 
Specific Solution 

Clinical Plan Model Plan 



DUKE University Radiation Oncology 

Phase 2: From Class Solution to Patient 
Specific Solution 



Clinical Application of Knowledge Models - Integration 

 
 Lung IMRT Model as A Rapid-learning Show Case 

 DVH Model + Beam Angle Model 

• 100 Lung Cases   

• All co-planar beams (best clinical knowledge) 

• Ignore non-planar plans (clinical knowledge sparse) 

 Extend Knowledge Models to Other Thorax Cases 

 Extend Knowledge Models to Non-coplanar Cases 

• Clinical knowledge about non-coplanar beam angles 

is sparse, immature 

• Extend the knowledge learned from co-planar beam to 

non-coplanar beam 
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black circle: clinical angles  

white diamond: knowledge driven angles 

Phase 3: Progressive Modeling  
- From Coplanar to Non-coplanar Beams 
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Phase 3: Progressive Modeling  
- From Coplanar to Non-coplanar Beams 

Clinical Plan Model Plan 



DUKE University Radiation Oncology 

Phase 3: Progressive Modeling  
- From Coplanar to Non-coplanar Beams 

Clinical Plan Model Plan 



Summary 

 Benefits of Knowledge Modeling: Clinical 

 Learning Curve, Quality, Consistency 

 Standardization, Automation, Integration 

 Benefits of Knowledge Modeling: Institutional 

 Systematic, Objective 

 Integrated Refinement and Evolution 

 Benefits of Knowledge Modeling: Future 

 Feature Based Knowledge for Big Data Research 

 Standardization (Evidence-based) and Optimization (Personalized) 

 

 



SAM Questions 
 

Treatment planning knowledge models are: 

 

0%

1%

6%

90%

3% a. Confined to a single institution 

b. Applicable to multiple modalities 

c. Useful for only IMRT 

d. Physician Specific 

e. Useable only with Monte Carlo-based dose calculation algorithms 



SAM Questions 

 1. Treatment planning knowledge models are: 

a.  Confined to a single institution 

b. Applicable to multiple modalities 

c. Useful for only IMRT 

d. Physician Specific 

e. Useable only with Monte Carlo-based dose calculation algorithms 

 

 Answer: b 

 Reference:  

 Lian et al, Modeling the dosimetry of organ-at-risk in head and neck IMRT 
planning: An inter-technique and inter-institutional study, Medical Physics 2013, 
40(12) 

 
 



SAM Questions 

 
The treatment planning knowledge that we can model include 

 

97%

1%

0%

1%

0% a. incident beam angle selection 
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d. DVHs of OARs 

e. All the above 



SAM Questions 

 2. The treatment planning knowledge that we can model include 

a. incident beam angle selection 

b. multiple OAR structures 

c. multiple PTV prescriptions 

d. DVHs of OARs 

e. All the above 
 

 Answer: e 

 Reference: 

 Yuan L, Wu QJ, Yin F, Li Y, Sheng Y, Kelsey CR, Ge Y. Standardized beam bouquets 
for lung imrt planning. Physics in medicine and biology 2015;60:1831-1843. 

 Liu J, Wu QJ, Kirkpatrick JP, Yin FF, Yuan L, Ge Y. From active shape model to active 
optical flow model: A shape-based approach to predicting voxel-level dose 
distributions in spine sbrt. Physics in medicine and biology 2015;60:N83-N92. 

 Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the 
factors which affect the interpatient organ-at-risk dose sparing variation in imrt plans. 
Med Phys 2012;39:6868-6878. 
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The organ sparing capability predicted by the knowledge 

model is 
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e. Patient specific, based his/her anatomy and physician’s 

prescription 



SAM Questions 

 3. The organ sparing capability predicted by the knowledge model is 

a. The average value of the sparing in the database 

b. Interpolated among a few similar cases 

c. Independent of prescription dose 

d. Only valid for maximum dose 

e. Patient specific, based his/her anatomy and physician’s prescription 
 

 

 Answer: e 

 Reference: 

 Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the 
factors which affect the interpatient organ-at-risk dose sparing variation in imrt 
plans. Med Phys 2012;39:6868-6878. 

   
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