Spine SRS: LINAC

Brian Winey, Ph.D. Department of Radiation Oncology Massachusetts General Hospital Harvard Medical School

Disclosures

- Travel and research funds from Elekta
- Member of Multi-institutional international spine SRS research consortium supported by Elekta
- MGH has received research support from Raysearch

Overview

- Spine SRS: alternate treatment for mets
- Some primary lesions
 - Depends upon histology and geometry

Overview

- Several treatment options exist for spinal metastases:
 - Surgery: decompression, en bloc resection, stabilization, minimally invasive
 - Augmentation: vertebroplasty or kyphoplasty
 - Radiation therapy: conventional or stereotactic radiosurgery

Spine metastases

- About 40% of cancer patients develop vertebral metastases: serious consequences pain, paralysis, quality of life
- Palliative low-dose radiotherapy is well established evidence-based treatment
- Limited long-term efficacy of conventional palliative RT
- **Dose-intensified spine radiosurgery / SBRT**
- Practiced by 44% of US Radiation Oncologists (*Pan Cancer 2011*)
- Quicker and more durable pain relief and local tumor control

Overview

- Shift the paradigm for treating spinal metastases
- Focus on minimizing morbidity of spine care in order to:
 - Improve pain control and quality of life
 - Maximize opportunities for systemic therapy
 - Retain durable local control
- Use of intensity modulated treatment modalities to increase dose to GTV/CTV/PTV while avoiding dose to critical structures: cord, cauda, esophagus

Evolution of Radiation Techniques

2-dimensional

3-dimensional

IMRT

Oh K, et. al.

Stereotactic Body Radiation Therapy "Spine Radiosurgery"

- SRS: Delivery of a high radiation dose (18-24 Gy) in a single fraction with high precision
- SBRT: fractionation of ablative doses (2-5 fractions)

MASSACHUSETTS GENERAL HOSPITAL RADIATION ONCOLOGY

<u>Case #1: Solitary and radioresistant metastasis</u> 68 yo with metastatic RCC and solitary L4 metastasis causing back and left leg pain

<u>Case #2: Retreatment after progression</u> 60 yo man with metastatic HCC and painful L1 metastasis, treated with 3 Gy x 10 in 6/2011. In 1/2012, progressed with new LLE numbness. Underwent partial corpectomy + instrumentation + fusion

6/2011 3 Gy x 10

1/2012 Clinical and radiographic progression

6/2012 5 months after resection

Spine SRS

- Does it work?
- Several studies
- Multi-Institutional Results

Stereotactic Body Radiation Therapy: Outcomes

Study	Year	N (tumors)	Fractionation (median)	Are salvage RT	pain relief	local control
HFH Detroit	2005	61	10-16 Gy x 1	0%	85%	93%
U Pitt	2007	500	20 Gy x 1	69%	86%	88%
MDACC	2007	74	6 Gy x 5 or 9 Gy x 3	56%	NR	77%
MSKCC	2008	103	24 Gy x1	0%	NR	90%
PMH	2009	60	8 Gy x 3	62%	67%	85%
Taiwan	2009	127	7.75 Gy x 2	22%	88%	97%

Histology	N (tumors)	dose	pain relief I	ocal control
Breast	83	20 Gy x 1	96%	100%
Lung	80	20 Gy x 1	93%	100%
Renal cell	93	20 Gy x 1	94%	87%
Melanoma	38	20 Gy x 1	96%	75%

median follow-up = 21 months from Gerszten et al. Spine 2007;32: 193-9

Overall survival

Performance status and metastatic disease for selection of patients with long OS expectancy

Imaging verified local tumor control

Median FU:

9.5 mo

Multivariate Analysis:

Influence parameter	p-value	HR (CI)
Interval PD to SBRT: ≤ 29.9 months	0.017	0.40
Histology: Other, NSCLS, Kidney, Melanoma	0.005	0.21

Number of Tx fractions, prescribed dose, EQD2/10 and Bilsky Score **not** correlated local tumor control

Pain control assessed at last clinical follow-up

Long term pain control High rates of complete pain response

Toxicity

Acute toxicity

	Dermatitis	Dysphagia	Pain
Tox assessment	322	324	348
G0	307	290	290
G1	15	31	35
G2	0	3	20
G3	0	0	3

Fracture

	New fracture	Progressive fracture
Tox assessment	403	400
Positive	17 (4.2%)	21 (5.3%)

- Low rates and low grade acute toxicity
- > 10% fracture rate, but 50% progressive fracture
- No case of radiation induced myelopathy

What are the primary aims of spine SRS/SBRT for vertebral metastases?

- 1. Pain Reduction
- 2. Local Control
- 3. Curative
- 4. 1 and 2
- 5. 2 and 3

Answer

- 1 and 2
- "maximize pain control and local control for the long term"
- Guckenberger et al. Radiation Oncology 2014, 9:226

Figure 4 Local tumor control analyzed per treated lesion: Kaplan Meier Curve with 95% confidence interval.

Spine Radiosurgery

- Benefits
 - Single session
 - Higher dose to tumor ("radioresistant")
 - Retreatment after failed conventional RT ("salvage")
 - Multimodality therapy to minimize extent of resection ("separation surgery")
- Potential drawbacks
 - Vertebral body fractures which are dosedependent
 - Reoccurrence local to the cord

Oh K, et. al.

Case #1 revisted: Solitary and radioresistant metastasis

Case #2 revisited: Retreatment after progression

6/2011

1/2012

6/2012 5 months after resection

Spine radiosurgery alone limited surgery + spine radiosurgery

Oh K, et. al.

Stereotactic Body Radiation Therapy: How does it work?

Exploit dose and fractionation

Influence of dose per treatment

Biologically:

(18 Gy x 1) > (2 Gy x 9)

MASSACHUSETTS

GENERAL HOSPITAL

RADIATION ONCOLOGY

HARVARD MEDICAL SCHOOL

Oh K, et. al.

Stereotactic Body Radiation Therapy: How does it work?

- Exploit dose and fractionation
- Rigid immobilization
- Precise patient positioning
- Sophisticated radiation planning
- Reduce toxicity to the cord by dose avoidance instead of fractionation

Immobilization and Visualization

- Rigid immobilization using custom body mold and vacuum bag (BodyFix) or QFix (Mask) for upper T-spine and C-Spine
- Real-time CT in treatment position with integrated hexapod couch

6 DOF Robotic Couch

CBCT System

- Automatic 6 DOF Registration
- Bone, Gray-Scale
- Clip Box
- 200 deg, Fast
 Scan
- 1 mm³ Voxels

Treatment: 1:1 Plan Date: ????

Patient Setup Uncertainty

What is the expected accuracy of patient positioning for CBCT guided linac Spine SRS?

- 1. Within 0.5 mm
- 2. 0.5 mm
- 3. 1.0 mm
- 4. 2.0 mm
- 5. 3.0 mm

Answer

1.0 mm

Other studies have demonstrated the same level of accuracy:

Gerszten, et. al. JNS 2010 "Setup accuracy of spine radiosurgery using cone beam computed tomography image guidance in patients with spinal implants"

Sophisticated Radiation Planning

Dose constraints:

- Spinal cord < 12-14 Gy x 1</p>
- Cauda equina < 16 Gy x 1</p>
- Sacral plexus < 18 Gy x 1</p>

GENERAL HOSPITAL

RADIATION ONCOLOGY

HARVARD

MEDICAL SCHOOL

Oh K, et. al.

Clinical Summary

- Provide fast and multidisciplinary care for patients with spinal metastases
- Goal of minimizing morbidity and while preserving local control and QOL

LINAC SRS Workflow

Diagnosis

Immobilization

Initial Contouring

- PTV, OARs- physician
- Planning Structures
- Hardware, artifacts
- Add Couch to CT (T5 and lower)

 T5 and above, typically use QFix or mask

0.2

MG

0 0

Distance From Surface (cm)

1

MASSACHUSETTS GENERAL HOSPITAL

RADIATION ONCOLOGY

Planning

- IMRT or VMAT
- Coplanar 7-9 beams/2 arcs
- Posterior (Anterior used for Cervical Vertebral locations)
- ~20 deg separation
- 600-1000 MU/beam
- Collimator Rotation Can Reduce MUs

Planning

Number	Name	Isocenter [cm]	Treatment unit	Gantry angle	Coll. Angle	Couch Angle	Jaw position [cm]	Jaw assignment	Segments	MU/Fraction
		R-L I-S P-A		[deg]	[deg]	[deg IEC]	X1 X2 Y1 Y2			
0	180	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	180.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed		1224.69
1	160	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	160.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed		983.45
2	140	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	140.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed	4	682.16
3	120	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	120.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed		496.77
4	220	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	220.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed	9	1200.37
5	200	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	200.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed	8	1074.87
6	100	1.65 -0.03 -2.27	MGH Synergy_S [6.0 MV]	100.0	0.0	0.0	-10.50 10.50 -8.00 8.00	Fixed		826.26

Planning

Tradeoffs/constraints N	avigation Beams Control points: 180							
Create template								
Tradeoff objectives	Tradeoff objectives Constraints							
Add Edit Delet		Add Edit Delete						
ROI	Description	ROI	Description					
R kidney	Max Dose 200 cGy	R kidney	Max Dose 310 cGy					
📕 R kidney	Max DVH 100 cGy to 50% volume	📕 L1 PTV	Max Dose 2500 cGy					
📒 L kidney	Max DVH 800 cGy to 40% volume	📕 L1 PTV	Min DVH 1800 cGy to 75% volume					
📕 L kidney	Max Dose 1500 cGy	cord + thecal sac + 1 mm	Max Dose 900 cGy					
📕 L1 PTV	Min Dose 1700 cGy							
L1 PTV	Min DVH 1800 cGy to 90% volume							
cord + thecal sac + 1 mm	Max Dose 900 cGy							

Final Dose

Delivery

- Pre Treatment kV/MV coincidence tests
- CBCT 1 to calculate transformation
- CBCT 2 to confirm shifts
- CBCT 3 if CBCT 2 has residuals >0.5mm
- Treat First Half
- CBCT3(4) account for intrafraction motion
- Treat Second Half
- CBCT4(5) measure residuals
- Tx Time: ~25 min (Depends on Dose rate)

IMRT versus VMAT

- Highly dependent on Maximum Dose Rate
- Both IMRT and VMAT will use maximum dose rate for many segments due to high dose/fraction
- Great potential for FFF treatments

IMRT versus VMAT

Table 2 Monitor units (MU) and delivery time (average \pm SD) comparison for MCO-IMRT and VMAT with or withoutcollimator rotation

Variable	Col	li: 0	Colli	: Rot
	MCO-IMRT	VMAT	MCO-IMRT	VMAT
MU	6216 ± 756^a	5861 ± 896^{b}	4681 ± 726^{a}	4360 ± 722^{b}
Delivery time (min)	-	-	$18.3 \pm 2.5^{\circ}$	$14.2 \pm 2.0^{\circ}$

Chen *et al* PRO 2015 "Efficiency Gains for Spine SRS using MCO IMRT guided VMAT Planning"

What is the most important technique for reducing the treatment delivery time for Spine SRS?

- 1. Use VMAT instead of IMRT
- 2. Use fewer IMRT fields
- 3. Use more IMRT fields
- 4. Use higher dose rates
- 5. Rotate the collimator

Answer:

- User higher dose rate
- VMAT may be faster but not always significant
- Collimator rotation can reduce MU
- Dose rate is the primary limiting factor for delivery time

 Table 2
 Monitor units (MU) and delivery time (average ± SD) comparison for MCO-IMRT and VMAT with or without collimator rotation

Variable	Col	li: 0	Colli	: Rot
	MCO-IMRT	VMAT	MCO-IMRT	VMAT
MU	6216 ± 756^{a}	5861 ± 896^{b}	4681 ± 726^{a}	4360 ± 722^{b}
Delivery time (min)	-	-	$18.3 \pm 2.5^{\circ}$	$14.2 \pm 2.0^{\circ}$

Chen et al PRO 2015 "Efficiency Gains for Spine SRS using MCO IMRT guided VMAT Planning"

Quality Assurance

- **TG-142**
- Commissioning
- Isocentricity tests: Imaging, MV, Robotic positioner
- Dosimetric QA

Commissioning

Small fields (1x1 cm² and larger)

Commissioning

Small fields (1x1 cm² and larger)

 Patient positioning and imaging systems (< 1 mm uncertainty)

Commissioning

- Small fields (1x1 cm² and larger)
- Patient positioning and imaging systems (< 1 mm uncertainty)
- Dosimetric tests

RADIATION ONCOLOGY

Daily Isocentricity

- Daily
- Plastic Densities
- Tungsten Ball

Patient QA

- Multiple solutions
- Rotational independence and resolution

LINAC SRS Conclusions

- SRS is a valuable treatment option for vertebral metastases
- Linacs equipped with CBCT and 6 DOF robotic positioners can accurately and safely treat spine SRS
- FFF can significantly reduce the treatment times and reduce the risk of patient motion

