Robotic and Gimbaled Spine SBRT A Physicist's Perspective

LIJUN MA, PhD, FAAPM Professor In Residence CAMPEP Program Director UCSF Radiation Oncology

Lijun.MA@ucsf.edu

Educational Objectives

- To grasp fundamental imaging and motion management concepts of robotic and gimbaled systems for spine SBRT
- To understand operations of robotic and gimbal system in a clinical setting for spine SBRT treatment delivery
- To define unique features of robotic and gimbaled systems against standard linac-based systems for spine SBRT

Genesis of Spine SBRT Circa 1995

Radiobiological Rationales

Single fraction: ~ 12-24 Gy /fx

No 4R; vascular damage observed

Hypofractionation: ~ 5-10 Gy /fx

Leverage Reoxygenation & Reassortment

Technical Basis of RT ed. S Levitt 2012

Spine SBRT vs Conventional IMRT

Properties	IMRT	SBRT
Dose × Fractions	3 Gy × 10 fx	16-24 Gy x 1 fx 12 Gy x 2 fx 6-9 Gy x 3 fx 6-10 Gy x 5 fx
Margin	10-20 mm	1-2 mm
Target Definitions	PTV	CTV/ITV/PTV
Motion Management	None	Must
Marginal Accuracy	Moderate	High
Radiobiology	Sufficient	Work in Progress

A physician may prescribe which of the following for an spinal metastasis SBRT treatment?

20% 1. 50 Gy in 25 fractions

20% 2. 50 Gy in 20 fractions

20% 3. 50 Gy in 10 fractions

4. 50 Gy in 5 fractions

5. 50 Gy in 2 fractions

State-of-the Art Spine SBRT Modalities

Features of Spine SBRT Delivery

• Speed: 10+ Gy/min

• Adequate field size: ~ 6 - 20 cm

• Fine beam modulation: ~ 5 mm

• Imaging Guidance: 2D/3D

• Motion Management: active/passive

Sharp Dose Gradient

10-15% per mm dose fall-off

Motion Management Techniques

System	Method	
Elekta	kV CBCT +/- 2D kV +/- BodyFrame	
Artiste	MV CBCT	
Varian/Novalis	kV CBCT +/- 2D kV +/- Surface markers	
Cyberknife	2D kV +/- Feedback Beam Correction	
Vero 4DRT	kV CBCT +/- 2D kV+/- Surface markers +/- Feedback Beam Correction	

kV CBCT-Based Alignment

Sahgal, Bilsky, Chang et al. JNS Spine (2011)

MV CBCT Overcoming Spine Hardware

Alignment despite presence of hardware (E Hansen and D Larson etal UCSF)

In the presence of extensive heavymetal hardware for a spine SBRT treatment, the most appropriate imaging for patient setup would be

- 20% 1. kV Tomosynthesis
- 20% 2. MV Cone-beam CT
- 20% 3. kV Fluoroscopy
- 20% 4. MV Cerenkov scanning
- 20% 5. kV Portal imaging

10

Combining BodyFrame and IG

A Sahgal et al 2012 (Univ of Toronto)

Non-rigid Setup Spine Motions

Site	Required Treatment T(min)	Non- Random DOF	Required Correction T(min)
T (n=20)	48-170	3.1±1.3	5.9 (1.1-14.3)
C (n=20)	30-138	5.5±0.7	5.5 (1.3-16.7)
LS (n=24)	44-150	4.1±1.3	7.1 (1.6-30.7)

Fiducial Based Robotic Tracking

Robotic SRT/SBRT Plan Delivery

Tokyo Kamagome Cancer Hospital

Gimbaled (± 2.5°) X-ray SBRT

- ± 60° gantry twist
- → ±185° gantry rotation
- 5D robotic couch
- → ExacTRAC system

Gimbaled X-ray Spine SBRT

Tokyo Kamagome Radiation Oncology

Cyberknife spine SBRT typically employs a large number of which of the following?

- 20% 1. beam orientations
- 20% 2. collimator rotations
- 20% 3. couch corrections
- 20% 4. gantry angles
- 20% 5. cone shuffles

10

Apparatus Dependence for Spine SBRT

Apparatus-Dependent Dosimetric Differences in Spine Stereotactic Body Radiosurgery

www.tcrt.e

purpose of this investigation was to study apparatus-dependent dose distribution difces specific to spine stereotactic body radiotherapy (SBRT) treatment planning. This institutional study was performed evaluating an image-guided robotic radiosurgery sysLijun Ma, Ph.D.¹ Arjun Sahgal, M.D.² Luca Cozzi, Ph.D.³ Eric Chang, M.D.⁴ Almon Shiu, Ph.D.⁵ Daniel Létourneau, Ph.D

Noticeable differences for complex cases

Summary

- Millimeter-level accuracy achievable for current Spine SBRT treatments.
- Future trend is for <u>faster</u>, more <u>adaptive</u>, and more <u>integrated</u> spine SBRT treatments

Acknowdgement

Drs. H Tanaka, T Furuya, K Karasawa Tokyo Kamagome Hospital

