Optimization of CT Simulation Imaging

Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT imaging

Goal: Achieve image quality that allows to perform the task at hand (diagnostic task), at the lowest possible dose

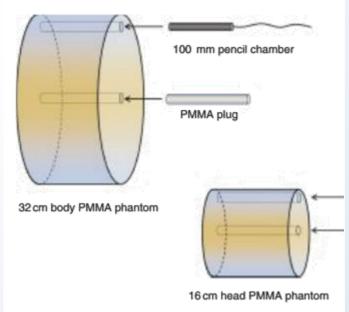
Amount of image noise that is tolerable depends on procedure that is being performed

Example: Placement of a brachytherapy applicator

- Current workflow:
 - Many images are being acquired during applicator placement
- Dose reduction strategies:
 - Use low mAs for repeat imaging during procedure, where noise can be tolerated
 - Restrict the scan region to volume-of-interest
- Good overall image quality in final image only

Keeping track of CT Dose: CTDI_{vol}

- CTDI_{vol}: Computed tomography dose index
 - Represents the dose to a 14.5 cm tall PMMA cylinder during a CT scan
 - Includes dose from scatter tails in MDCT
 - CTDI_{vol} varies with mAs, kVp and accounts for helical pitch
 - 32cm diameter phantom for body protocols
 - 16cm diameter phantom for head/pediatric protocols


CT dose measurement

A 100mm pencil ion chamber is used to measure the integrated dose profile D(z) along the scanner axis :

$$CTDI_{100} = \frac{1}{nT} \int_{L=-50mm}^{+50mm} D(z)dz$$

The dose to the phantom, CTDI_w, is estimated by weighting CTDI₁₀₀ in the center and periphery of the phantom:

$$CTDI_{w} = \frac{1}{3}CTDI_{100,center} + \frac{2}{3}CTDI_{100,periph}$$

Bushberg, 2012

CT dose index: CTDI_{vol}

- In a helical scan, the table is translated while the gantry rotates
 - pitch = 1: Table increment/rotation
 equal to x-ray beam width
 - pitch < 1: Overlapping scans
 - pitch > 1: Gaps in scan (artifacts)
- CTDI_{vol} is the volume-weighted dose index that accounts for pitch:

$$CTDI_{vol} = \frac{CTDI_w}{pitch}$$

Where to find guidance

• Use diagnostic CT as a guideline:

The AAPM has published CT protocols
 http://www.aapm.org/pubs/CTProtocols/

- Diagnostic reference levels (DRL):
 - 75th percentile of CTDI_{vol} of all examinations
 - Achievable dose (AD) 50th percentile
 - Based on multi-institution, nationwide data

DRL for CTDI_{vol}

Table 3 Diagnostic Reference Levels and Achievable Doses for Adult and Pediatric CT (CTDI_{vol})

	Patient Lateral (LAT) Dimension	CTDI Phantom Diameter (cm)	DRL (mGy)	AD (mGy)
Adult head [6,9]	16	16	75	57
Adult abdomen-pelvis [6,9]	38	32	25	17
Adult Chest [6]	35	32	21	14
Pediatric 5 year old head [6]	15	16	40	31
Pediatric 5 year old abdomen- pelvis [9]	20	16	20	14

ACR–AAPM practice parameter for diagnostic reference levels and achievable doses in medical x-ray imaging (2014)

Dose-length product

- CTDI_{vol} by itself is independent of the scan volume
 - No information on dose to patient
- Dose-length product (DLP) incorporates scan length L:

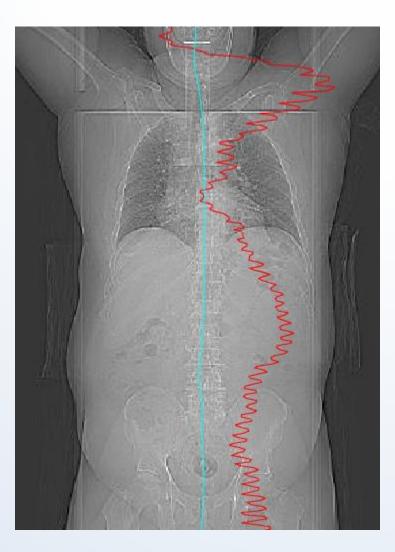
 $DLP = L * CTDI_{vol}$

Effective dose can be estimated from DLP:

Multisection CT protocols: Sex- and age-specific conversion factors to determine effective dose from dose-length product. P Deak, Y Smal, W Kalender. *Radiology*, 257 (2010)

I'm ready to scan my patient. How can I know CTDI_{vol} and DLP?

 CTDIvol and DLP are displayed on the scanner console prior to performing a scan!


Label:	_
Start:	*
End:	*
Length:	250.2
Direction:	⊂ In . © Out
Thickness:	0.9 🗹 mm
Increment:	0.45 📝 mm
🗷 DoseRight	Z-DOM
kV:	120 🖌
mAs/Slice: 250) — 250 🖌
Average mAs: (i	mA) 250 (200)
Preview	
-	CTDI:15.3mGy
Time:5.704s	DLP:469 flmGv* cm Phantom: 16cm

The pre-scan CTDI_{vol} or DLP is high. What can I do to reduce it?

Adjusting these parameters can reduce CTDIvol:

- mAs
- Pitch
- kVp
- X-ray beam collimation
 - Does not affect displayed CTDIvol, but affects dose efficiency
- Tube current modulation
 - Does not directly affect displayed CTDI_{vol}, but will reduce dose in less attenuating anatomical regions, such as thorax

Tube current modulation

Tube mA varies to compensate for changes of attenuation in different anatomic regions

Effect of kVp on CTDI_{vol}

From: L. Yu et al, Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med. 2009 Oct; 1(1): 65–84.

Parameter	Effect on Dose
mAs	Reducing mAs reduces dose mAs proportional to CTDI _{vol} !
Pitch	Increasing pitch reduces dose
kVp	Lowering kVp will reduce CTDI _{vol} . Relationship is not linear.
Collimation	Use widest possible collimation
Scan range	Restrict the scan range to the region of interest. Reduces DLP, no effect on CTDI _{vol} . Particularly important for repeat scans.
Dose modulation	Aims to maintain same noise level In combination scans (Chest/Abd)

Which statement is FALSE? CTDI_{vol} is ...

20%	1.	proportional to mAs
20%	2.	patient dose
20%	3.	represents the scanner output
20%	4.	inverse proportional to pitch
20%	5.	based on a reference phantom

Correct Answer:

2: CTDI_{vol} is **NOT** patient dose

Reference:

 Cynthia H. McCollough, CT dose: how to measure, how to reduce. Health Physics 95, (2008) 508–517. My planning CT image does not show the same anatomic detail as the diagnostic CT. How can I improve it?

CT reconstruction parameters

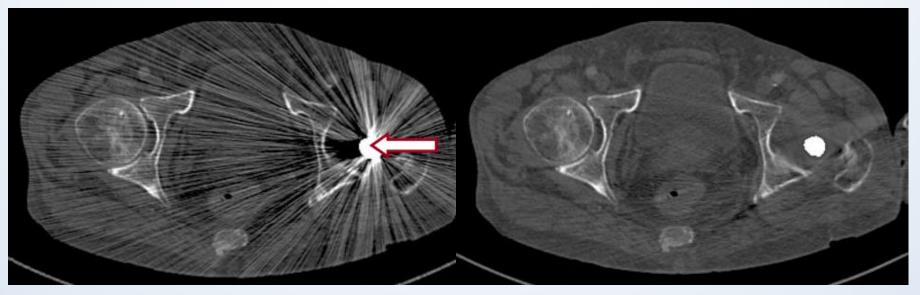
There are many reconstruction parameters that strongly affect the CT image appearance. These parameters need to be chosen according to anatomic structures to be visualized.

There may be differences in how the scans are performed that will affect image quality, such as breath hold or free breathing, or administration of contrast agent.

Review: CT reconstruction parameters

- Reconstruction field-of-view/matrix size
 - In planning scans, the FOV is larger because it includes more anatomy such as elbows
 - The matrix size on a scanner tends to be fixed to 512x512, which can produce large pixel sizes to cover large area
 - To increase resolution, increase matrix size or decrease FOV
- Reconstruction filter
 - Standard B: CT # most accurate, high-resolution detail may be blurred
 - Y-Sharp: Better high-frequency detail
- Slice thickness, spacing
 - Thick slices are less noisy
 - Slice spacing as close as needed

Review: CT reconstruction parameters

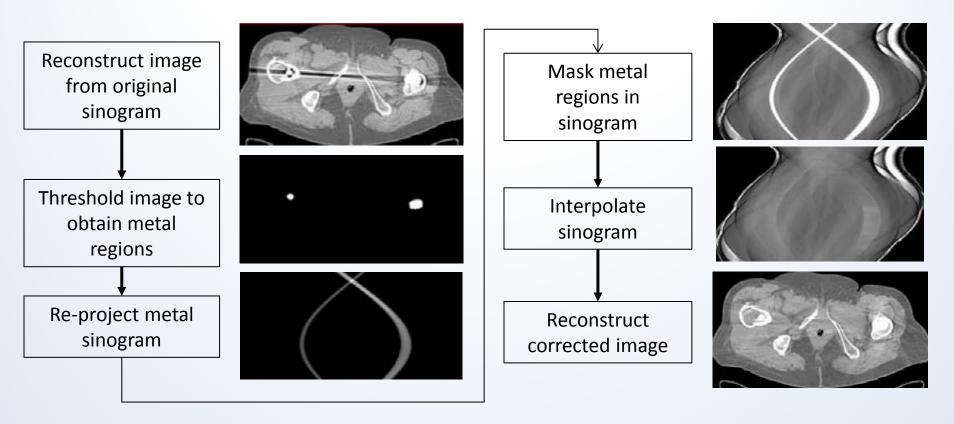

Multiple reconstructions from one CT acquisition

- Re-reconstruct with different parameter settings to improve anatomic detail
- Display window settings
 - Different window width/level settings portray different types of anatomy (lung window vs. softtissue or bone window)
- Iterative reconstruction (if available on system)
 - Can reduce noise in high-contrast object, such as lung tumors

Advanced image reconstruction tools: Metal artifact reduction (MAR)

Available on CT scanners as optional feature

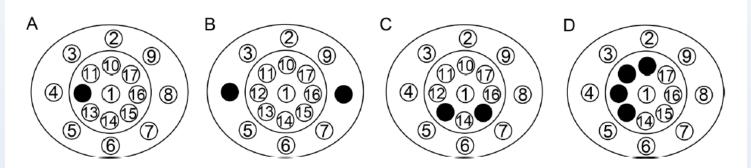
- Improvement of anatomic visibility
- Better CT # accuracy



Meyer E et al., Normalized metal artifact reduction (NMAR) in computed tomography, Medical Physics, 37, 5482-5493 (2010)

General principle:

1. Identify metal regions


2. Correct sinogram

E. Meyer, R. Raupach, M. Lell, B. Schmidt, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. **37**, 5482 (2010).

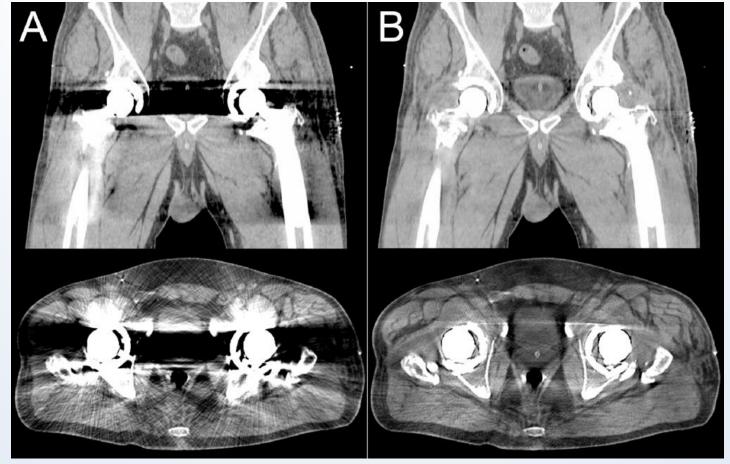
Evaluation of an iterative MARalgorithm

- The complexity of the metal structures affects the effectiveness of MAR.
- Use test phantom with different metal arrangements:

From: Axente M, et al., Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Medical Physics, 42, 1170-1183 (2015)

CT number accuracy with MAR

Evaluation of a prototype algorithm using a phantom with 25mm steel inserts:


W/o MAR With MAR Phantom w/o metal

From: Axente M, et al., Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Medical Physics, 42, 1170-1183 (2015)

Patient with hip implants

w/o MAR

with MAR

From: Axente M, et al., Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Medical Physics, 42, 1170-1183 (2015)

In which situation is metal artifact reduction (MAR) expected to be the least effective?

20%	1.	CT with hip prosthesis
20%	2.	CT # accuracy
20%	3.	CT with LDR Fletcher-Suit applicator
20%	4.	CT with spinal fixation rods
20%	5.	CT with dental filling artifacts

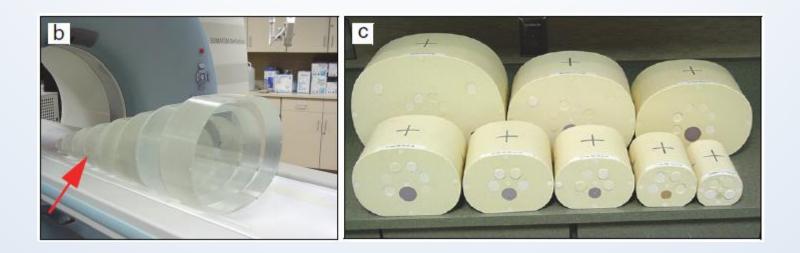
Correct Answer:

5: CT with dental filling artifacts.Close arrangements of several metal objects is most difficult to correct for.

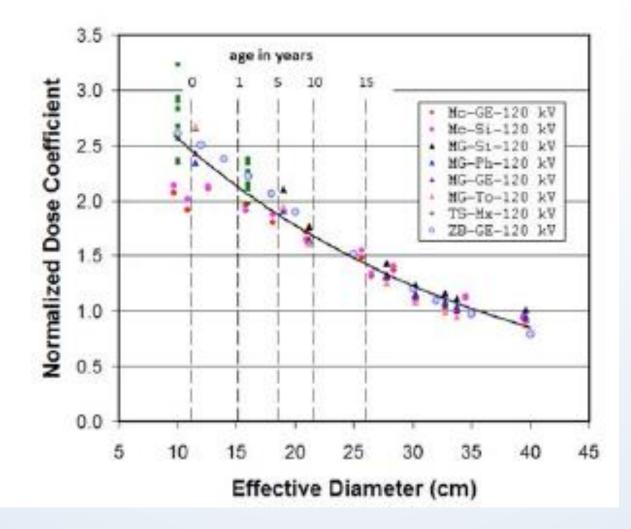
Reference:

 Jessie Y Huang, et al, "An evaluation of three commercially available metal artifact reduction methods for CT imaging", Phys. Med. Biol. 60 (2015), 1047-1067.

Pediatric patients

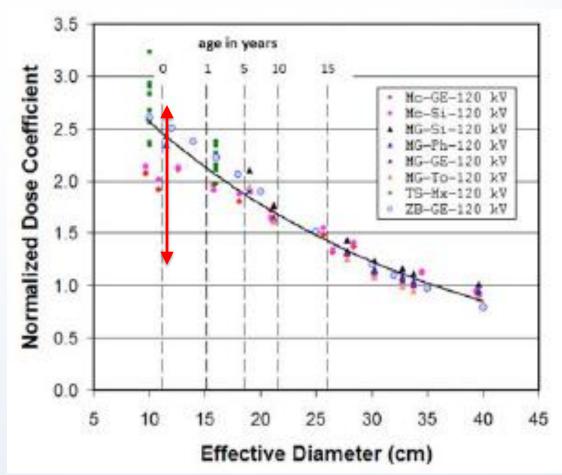


- Image gently: "child-size" radiation
 - Children are more sensitive to radiation and have a longer lifetime during which cancer may develop
 - Instructions for child-sizing CT protocols on image gently website


http://www.imagegently.org/Portals/6/Procedure s/IG%20CT%20Protocols%20111714.pdf

Size-specific dose estimate (SSDE)

- SSDE is an estimate of the absorbed dose to a uniform phantom
- Dose conversion coefficients allow to infer size-specific doses for a given CTDIvol


Normalized Dose Coefficients for the 32cm CTDI phantom

How to child-size protocols

For the same acquisition parameters, the dose to a newborn is much higher than that to an adult

-> Reduce mAs so as to match SSDE

How to child-size protocols

Image gently: Match SSDE for pediatric patients with that for adults

Age	Effective Diameter (cm)	f = SSDE/CTDI _{vol} conv. factor	mAs reduction factor f _{adult} /f _{child}	SSDE (mGy)
newborn	12	2.38	0.52	23
1yr	14	2.22	0.55	23
5yr	17	1.98	0.62	23
10yr	20	1.53	0.7	23
ADULT	30	1.23	1	23

Child-sizing protocols

Image gently suggests more aggressive dose reduction for younger patients:

Age	Effective	CTDI _{vol} to	mAs red	uction factor	
	Diameter (cm)	SSDE conversio n factor	Limited (matching SSDE)	Moderate	Aggressive
newborn	12	2.38	0.52	0.39	0.25
1yr	14	2.22	0.55	0.42	0.29
5yr	17	1.98	0.62	0.50	0.39
10yr	20	1.53	0.7	0.62	0.53
ADULT	30	1.23	1	1	1

Child-sizing protocols: example

Download CT protocols (excel) from image gently website, http://www.imagegently.org/Portals/6/IG%20CT%20PPT%20Tabl es%20Web%20Version%20(12-16-14).xls

Abdome n/	Abdome n/	Abdome n/	kVp	mA	Time (sec)	Pitch During Measure d CTDIvol	Pitch During Clinical Exam	Adult SSDE					
Pelvis:	Pelvis:	Pelvis:	120	200	1	1.0	1.0	23					
										Aggres-	<i>Limited</i> NB =	Moderat e NB = 0.75 *	Aggressiv e NB =
					Limited		Aggressiv	Limited	Modera	sive	Adult	Adult	0.5 * Adult
AP	LAT	Effective			mAs	e mAs	e mAs	mAs	te mAs	mAs	SSDE	SSDE	SSDE
Thicknes	Thicknes	Diameter	S (km)	100	Reductio n Factor	Reductio n Factor	Reductio n Factor	SSDE	SSDE	SSDE (mGy)	Estimat ed mAs	Estimate d mAs	Estimated mAs
s (cm)	s (cm)	(cm)	(kg)	Age newpor				(mGy)	(mGy)				
10	14	11.8	4	n	0.52	0.39	0.25	23	17	11	104	77	50
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12	110	84	59
14	20	16.7	18	5 yr	0.62	0.50	0.39	23	19	15	123	100	78
16	25	20.0	33	10 yr	0.70	0.62	0.53	23	20	18	140	123	106
19	29	23.5	54	15 yr	0.80	0.74	0.68	23	21	20	160	148	137
22	32	26.5	65	20 yr	0.89	0.86	0.83	23	22	22	179	172	165
25	35	29.6	75	ma adult	1.00	1.00	1.00	23	23	23	200	200	200
31	41	35.7	110	lg adult	1.21	1.28	1.35	23	25	27	242	256	270

Child-sizing..

From your adult protocol, find mA, rotation time, pitch and enter into spread sheet:

Abdome n/	Abdome n/	Abdome n/	kVp	mA	Time (sec)	Pitch During Measure d CTDIvol	Pitch During Clinical Exam	Adult SSDE						
Pelvis:	Pelvis:	Pelvis:	120	200	1	1.0	1.0	23						
					Limited	Moderat	Aggressiv	Limited	Modera	Aggres- sive	<i>Limited</i> NB = Adult	Moderat e NB = 0.75 * Adult	Aggressiv e NB = 0.5 * Adult	weight (age)
AP	LAT	Effective	Mas		mAs	e mAs	e mAs	mAs	<i>t</i> e mAs	mAs	SSDE	SSDE	SSDE	coocific mAc
Thicknes			s		Reductio			SSDE	SSDE	SSDE			Estimated	specific mAs:
s (cm)	s (cm)	(cm)	(kg)	Age	n Factor	n Factor	n Factor	(mGy)	(mGy)	(mGy)	ed mAs	d mAs	mAs	
10	14	11.8	4	newbor	0.52	0.39	0.25	23	17	11	104	77	50	
11	16	13.3	10	1 yr	0.55	0.42	0.29	23	18	12	110	84	59	
14	20	16.7	18	5 yr	0.62	0.50	0.39	23	19	15	123	100	78	
16	25	20.0	33	10 yr	0.70	0.62	0.53	23	20	18	440	123	106	
19	29	23.5	54	15 yr	0.80	0.74	0.68	23	21	20	160	148	137	
22	32	26.5	65	20 yr	0.89	0.86	0.83	23	22	22	179	172	165	
25	35	29.6	75	om tlube	1.00	1.00	1.00	23	23	23	200	200	200	
31	41	35.7	110	lg adult	1.21	1.28	1.35	23	25	27	242	256	270	

Worksheet is locked, only yellow fields can be modified.

For a given CTDIvol, how different is the SSDE in newborns compared to SSDE for adults?

20%	1. They are equal
20%	2. about 4x greater
20%	3. about 4x lower
20%	4. about 2x greater
20%	5. about 2x lower

Correct Answer:

4: about 2x greater.

The size-specific dose estimate for newborns is about twice that for an adult, for the same CTDI_{vol}.

Reference:

• AAPM report 204

Thank You!