Real Time Tumor Motion Tracking with CyberKnife

Martina Descovich, Ph.D
University of California San Francisco

July 16, 2015
Learning objectives

- Review the principles of real-time tumor motion tracking with Synchrony
- Discuss clinical applications
- Discuss tracking accuracy
- Compare it to other implementation

Disclosure

- Research support and Pilot program evaluation agreement, Accuray Inc Sunnyvale, CA
The CyberKnife system

Camera A
Camera B
Detector A
Detector B
IR Camera
Linac
Robot
Imaging and tracking system

Internal target position is calculated by comparing x-ray images with DRR.

Position of external markers (LED) is detected by optical camera – breathing cycle.

IR system
Synchronize
Correlate

Imaging System

Internal target position is calculated by comparing x-ray images with DRR.
Synchrony Motion Tracking
Automatic model

1) Peak & Valley
2) Dataset Acquisition

Synchrony Model (mm):

0.5	6.4	0.7	1.6
0.7	5.9	0.4	1.3
0.0	3.9	0.2	1.1
2.1	5.8	0.7	1.6
3.5	-0.1	-0.9	0.7
4.5	3.2	0.4	1.3
2.1	-0.9	0.2	0.7
0.0	-10.4	-3.2	0.6
3.0	-0.7	-0.9	0.9
1.8	-16.2	-2.9	-0.2

8-15 model points

Model info

Tracking Range (mm): 20.0
oAB (mm): 0.1
Uncertainty (%): 13.9

Rigid Body (mm): 1.5
collinearity (deg): 15.0
Fiducial Spacing (mm): 18.0

Images
Acquired: 318 Expected: 540
Exposed: 19.4 Expected: 32.9

Tracking parameters
Phase triggered dataset acquisition

- First image – **mid respiratory phase**
- 9 random pairs
- Analysis of current model before triggering 3 additional image pairs at the **required respiratory phase**

- Easier to get an **optimal model** – less user dependent
 - > 85% coverage
 - Well distributed model points
 - Low correlation error
Movie Mode (video)
Comet graphs (video)
The internal target position can be extracted based on gold markers or large/dense tumors visible on 2 cameras or just 1 camera.
1-view tracking

- Tumors visible in only 1 projection image
- The component of motion in the image plane is tracked
- Partial ITV expansion in the un-tracked direction

✅ Sup-Inf motion is tracked
With 1-view tracking is possible to track relatively small targets.

GTV dimensions = 9 x 9 x 9 mm³
Does patient have a fiducial?

YES
- Synchrony motion tracking
 - Contour GTV on breath hold CT scan
 - Create PTV by expanding the GTV (2-5 mm)

NO
- LOT to determine tracking method
 - 2-views
 - Contour GTV on FB or BH scan
 - PTV = GTV + margin
 - 1-view
 - Contour primary and secondary GTVs on inhale & exhale scans
 - ITV=projection of target motion in the un-tracked direction
 - PTV = ITV+margin use larger margin in the un-tracked plane
 - 0-view
 - Contour ITV on 4DCT scan
 - ITV = PTV +margins use at least 5 mm**

Dynamic tracking
Tracking accuracy

- Calculated the difference between predicted and actual target position
- Mean error $< 0.3 \text{ mm}$
- Intra-fraction error $< 2.5 \text{ mm}$ for respiratory amplitudes up to 2 cm

- Tracking compensated for both intra-fraction motion and for inter-fraction baselines shifts
- Tracking accuracy in phantoms $< 0.95 \text{ mm}$
Tracking with the Vero Gimbals System

- External marker position detected by IR camera
- Internal target position from two stereo kV imager in fluoro mode

- Tracking based on IR breathing signal and correlation model
- Gimbals system – Pan & tilt motion of the treatment beam
- It can quickly steer beam to track tumor motion
- Total system latency is 40 ms
- Marker & marker-less Dynamic Tumor tracking & Gating
Conclusion

- CyberKnife Synchrony enables to synchronize respiratory-induced target motion with radiation delivery
- Correlation model between the position of the internal target and the position of external markers (LED)
- The robot position is continuously re-adjusted to follow the moving target
- Marker & marker-less dynamic tracking
- Clinically implemented for over 10 years
- Tracking accuracy in phantoms < 0.95 mm
Acknowledgments

UCSF CyberKnife team

Chris McGuinness
Dilini Pinnaduwage
Atchar Sudhyadhom
Jean Pouliot
Cynthia Chuang

Alex Gottschalk
Sue Yom
Steve Braunstein
Albert Chan
Adam Garsa
Mekhail Anwar

UCSF Comprehensive Cancer Center
San Francisco