X-Ray Based Real Time Imaging Verification

Lei Ren, Ph.D.
Duke University Medical Center

2015 AAPM 57th annual meeting, Educational Course, Therapy Track

Disclosure

I have received research funding from NIH, Scandidos, and Varian Medical Systems.

Why Real-Time Imaging Verification?

- Patient intra-fraction motion
 body motion, breathing change
- Uncertainties in localizing moving targets, such as lung and liver tumor
- Critical for hypo-fractionated treatment
 - Tight PTV margin
 - Long treatment time
 - High fractional dose
Potentials for Real-Time Imaging

- Reduce treatment error and PTV margin
 - Pre-treatment imaging verification
 - During-treatment imaging verification
 - Gated treatment
 - Target tracking

X-ray based Verification Techniques

- Single source: kV, MV
- Multiple sources: dual kV, kV/MV
- Gantry mounted: Linac gantry kV, MV
- Room mounted: dual kV
- Mobile: CT on-rail, C-arm

Single Source X-ray Imaging – kV Fluoro

- Real-time imaging with a gantry mounted imager

 - kV x-ray source
 - Flat panel detector
 - Fluoro imaging

 - kV beam: 60-120 kVp, 100mA (frame rate of 15 fps)
 - Imager matrix size: 1024x768 (pixel size: 0.388mm)
 - Additional imaging dose to patient
Single Source X-ray Imaging – MV Cine

- Cine MV imaging with treatment beam
 - Frame rate: ~10 fps
 - Imager matrix size: 1024*768 (pixel size: 0.392mm)
 - MV treatment beam, no extra imaging dose
 - Reduced soft tissue contrast compared to kV fluoro

Single Source X-ray Imaging - Gating

- Gated SBRT lung treatment:
 - Fluoro kV Verification
 - Cine-MV Verification
 - RPM Verification

Multi-source X-ray Imaging – Dual kV

- Two oblique kV imaging beams
 - Source-isol = 2.24m, source-detector=3.62m. Flat panel detector of 20cmx20cm, 0.4mm resolution
 - 3D-2D rigid registration to determine the 3 rotations and 3 translations. 6D couch to correct for the misalignment
 - Real time verification achieved by external marker monitoring and snap kV verification
Multi-source X-ray Imaging - Cyberknife

- Two orthogonal kV x-ray sources and detectors
- External LED markers monitoring (25-40Hz).
- Correlation model (CM) built between external signal and internal tumor motion. Tracking based on external signal to minimize the imaging dose.
- X-ray images taken per beam basis. Model automatically updated based on new projections.

Multi-source X-ray Imaging - Cyberknife

- Markerless:
 Xsight, localization based on soft tissue or bony structure

Lung tumor >1.5cm, surrounded by air

Multi-source X-ray Imaging - Cyberknife

- Marker based:
 Synchrony, 3-5 fiducial markers

Liver SBRT imaging and tracking

From http://www.fineneedlemarker.com/
Multi-source X-ray Imaging - Vero

- Two orthogonal kV imaging systems at 45deg from MV beam axis, temporal resolution 15fps.
- EPID for MV portal imaging
- Infra-red camera for external monitoring
- Marker based tracking (marker of 0.75 mm diameter and 1-2 cm length)

Vero system by Brainlab and Mitsubishi Heavy Industry

Multi-source X-ray Imaging - Vero

- Before treatment, 20-40 s repeated x-rays and IR external surrogate positions are acquired simultaneously at frame rates of 11 and 50 fps to build correlation model.
- Tracking is guided by external IR signal. Orthogonal kV imaging acquired every 1-2s to verify and rebuild the correlation model.
- MV imaging to verify beam position to determine tracking error.

Vero system by Brainlab and Mitsubishi Heavy Industry

Emerging Imaging Technique - DTS

- Scan angle: 0˚
- Scan time: <<1 s
- Scan dose: <<1 mGy
- Dimension: 2D

- Scan angle: 360˚/~200˚
- Scan time: ~1 min
- Scan dose: ~1-8 cGy
- Dimension: 3D

- Scan angle: 20˚ ~ 60˚
- Scan time: < 10 s
- Scan dose: < 1 cGy
- Dimension: Quasi-3D

Wu et al, IJROBP, 2007
Emerging Imaging Technique - DTS

Orthogonal-view DTS provides much better volumetric information than single-view DTS, ~1mm accuracy

Emerging Imaging Technique - Fluoro CBCT

Principle: deform prior image to obtain on-board images

\[CBCT_{new} = \text{Deform}(D, CT_{prior}) \]

Ren et al, Medical Physics, 2008

Emerging Imaging Technique - Fluoro CBCT

\[D = D_{0 \text{ ave}} + \sum_{j=1}^{3} \bar{w}_j \text{PCA}_j \]

Fluoro CBCT based on a single projection.

Li et al, Medical Physics, 2010
Emerging Imaging Technique – Limited Angle Intrafraction Verification (LIVE) system

Limited angle kV/MV scan, prior image, PCA+free form deformation model

Ren et al, Medical Physics, 2014

Emerging Imaging Technique – LIVE

Concurrent kV-MV imaging during arc treatment using Truebeam Research Mode.

Emerging Imaging Technique – LIVE

LIVE Ground-truth

15deg scan angle, ~2.5s scan time
Summary

- Real time imaging provides inter- and intra-fraction verification, which reduces the treatment error and provides basis for target tracking.
- Fast robust image analysis technique is critical for target localization in real time imaging.
- External surrogate monitoring is combined with x-ray imaging to minimize the imaging dose during real time verification. Patient breathing irregularities affect the correlation model.
- Emerging technologies, such as DTS, fluoro CBCT and LIVE, can potentially provide fast volumetric images for 4D target verification.

Acknowledgements

- Duke Radiation Oncology: Fang-Fang Yin, PhD
 Jing Gai, PhD
- Duke Computer Science: Xiaobai Sun, PhD
 Nikos Pitsianis, PhD
- Duke Medical Physics Program: Paul Segars, PhD
 You Zhang, PhD
 Wendy Harris

Evaluation: CIRS phantom study

Concurrent kV-MV Imaging Scheme During Treatment