

Cancer Center Aaking Cancer History"

Dosimeters for Measuring **Non-Target Doses**

TG-158 Chapter 4 **Measurement Approaches**

4.1 Photon Dosimetry

- Thermoluminescent dosimeters (TLDs)
 Optically stimulated luminescent dosimeters (OSLDs)
- Diode dosimeters
 Metal oxide-silicon semiconductor field effect transistor dosimeters (MOSFETs) lon chambers
 Film
- 4.2 Neutron Dosimetry
 - Thermal neutron-based detectors
 - Thermal neutron detectors
- Thermal neutron detector-moderator systems
 Rem meters and extended-range rem meters
- Bonner sphere spectrometers and extended-range Bonner sphere spectrometers
 Fast neutron detectors
- Bubble detectors - Track-etch detectors
- Tissue-equivalent proportional counters (TEPCs)
- 4.3 Phantoms

MV Photon Dosimetry:

Important Considerations for Out-of-Field **Measurements**

MV Photon Beams Out-of-Field Photon Measurements

- Four general measurement considerations that are particularly relevant to out-of-field measurements:
 - 1. Dose at the surface
 - 2. Energy spectrum
 - 3. Dosimeter dynamic range
 - 4. Presence of other particles

Dose at the Surface

• The out-of-field dose is up to 5x higher at the patient surface, decreases to ~ d_{max} , and then is relatively constant with increasing depth.

MV Photon Out-of-Field Measurements Dose at the Surface

• Because the out-of-field dose is up to 5x higher at the patient surface.....

a dosimeter that is placed on the patient surface will overestimate dose by as much as 5x.

 For out-of-field measurements, dosimeters should be covered by bolus with a thickness of ~ d_{max}.

MV Photon Out-of-Field Measurements Energy Spectrum Considerations

- The average beam energy is much lower outside the treatment field.
- A dosimeter that is not tissue equivalent will overrespond to this softer radiation relative to its calibration, which will generally be based on the 1° beam.
- This effect can be sizeable to the point of unacceptable accuracy unless it is accounted for.

TLD/OSLD	Diode	MOSFET	Ion Chamber
• Overresponse 5-30% compared to in-beam.	Overresponse up to 70% compared to in-beam.	• Overresponse 50-600% compared to in-beam.	Overresponse negligable compared to in-beam.

MV Photon Out-of-Field Measurements Dynamic Range Considerations

- Dose levels outside the treatment field are low
 - MU for phantom measurements is often scaled up to achieve an appropriate reading.
- MU scaling is not possible for in vivo measurements, and an appropriate dosimeter must be selected.

TLD/OSLD	Diode	MOSFET	Ion Chamber
• Attention should be paid to calibration dose level relative to measurement dose level (linearity effects).	• No dynamic range issues.	• Even a high- sensitivity MOSFET in a high-sensitivity voltage setting can measure dose only down to ~ 1 mGy.	 For long reading periods, should monitor for potential electrometer drift.

MV Photon Out-of-Field Measurements Other Particle Considerations

- It is important to determine whether measurements are being made in a mixed field.
- Dosimeters can respond very differently to different types of radiation.

TLD-100

- The standard TLD-100 overresponds to neutrons by as much as 10-12x compared to photons.
- A neutron-insensitive dosimeter such as a TLD-700 should be used to measure photon doses for >10 MV.
- Separate neutron dosimetry should be conducted to determine the neutron dose.

Neutron Dosimetry:

Measurement Challenges

Neutron Dosimetry Measurement Challenges

• Detector response is strongly energy-dependent.

Sensitive to thermal neutrons:

Passive detectors, e.g., TLD-600s, ¹⁹⁷Au activation foils

above ~10 MeV: - Bubble detectors

Limited response

- Track-etch detectors
- Active detectors, e.g., ³He,
 ¹⁰B, ⁶Li detectors

- Thermal neutron detectors within low-Z moderators, e.g., Bonner spheres, commercial rem meters

NCRP, 2005

Neutron Dosimetry What You Need to Know:

- Neutron detectors have strong <u>energy</u> <u>dependence</u>.
- The range of neutron energies being measured must be determined to select the appropriate dosimeter.
- -Photon therapy
- -Particle therapy

Neutron Dosimetry Challenges Phantom/Patient Measurements

Neutron energy spectra change dramatically and non-uniformly with increasing depth in tissue.

Neutron Dosimetry Challenges Phantom/Patient Measurements

 Phantom/Patient measurements are not possible with many neutron detectors because these detectors are too large.

Concluding Remarks about Neutron Dosimetry

- Neutron measurements are prone to very large errors.
- Therefore, TG-158 has separate recommendations that are applicationdependent and based on the necessary accuracy.
- These recommendations will be discussed in detail by Dr. Kry.

References

- AAPM TG-158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. [Submitted].
- National Council on Radiation Protection and Measurements (NCRP). NCRP report 151, structural shielding design and evaluation for megavoltage x- and gamma-ray radiotherapy facilities. Appendix C: neutron monitoring for radiotherapy facilities. Bethesda, MD:-NCRP; 2005:246.
- · Kry SF, Howell RM, Salehpour M, Followill DS. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy. Med Phys 2009;36(4):1244-50 PMCID: PMC2736753.
- Howell RM, Kry SF, Burgett E, Hertel NE, Followill DS. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators. Med Phys 2009;36(9):4027-38. PMCID: PMC2738742.
- Howell RM, Burgett EA. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system. Med Phys. 2014;41(9):092104. PMCID: PMC4149696.
- · Knoll GF. Radiation detection and measurement. Hoboken, NJ: John Wiley; 2010.

End

Thank You