Treatment Simulation, Planning and Delivery for **Stereotactic Body Radiation Therapy**

Yong Yang, Ph.D. **Department of Radiation Oncology Stanford University**

2015 AAPM Therapy Educational Course

Disclosure

Stanford University Radiation Oncology has received research grant from Varian Medical System.

Acknowledgement

Stanford Radiation Physics

- Lei Xing, Ph.D. Ruijiang Li, Ph.D. Ben Fahimian. Ph.D. Anie Hsu, Ph.D. Karl Bush, Ph.D. Bin Han, Ph.D. Gary Luxton, Ph.D. Dimitre Hristov, Ph.D.

- Dimitre Hristov, Ph.D. Peter Maxim, Ph.D. Lei Wang, Ph.D. Tony Lo, Ph.D.

- Stanford Radiation Oncology
- Bill W. Loo, M.D., Ph.D. Bill W. Loo, M.D., Ph.D.
 Albert Koong, M.D., Ph.D.
 Daniel Chang, M.D.
 Max Diehn, M.D., Ph.D.
 Quynh-Thu Le, M.D.

UPMC Radiation Oncology

- Saiful Huq, Ph.D.
 Dwight Heron, M.D.
 Tianfang Li, Ph.D.
 Ron Lalonde, Ph.D.
 Xiang Li, Ph.D.

Outline

Immobilization and Simulation **Treatment Planning Target Localization & Plan Delivery** Summary

Immobilization

- Accurately re-position patient
 Reduce/Minimize patient voluntary and involuntary motion >Reduce/Minimize organ/target motion
- ---Abdominal compression
- Comfortable for long treatment
 Compatible with IGRT
- Not interfere with treatment beam
- Consider machine safety zones

Target Motion Reduction

Lung tumor motion under varying levels of abdominal compression (pressure plate) Heinzerling et al, UROBP 2008

Limitations

 Patient discomfort
 Variable daily distortion in abdominal anatomy

Imaging

- Multimodality of high resolution(*1-2mm slice thickness*) images (CT/MRI, PET/CT)
- 4DCT/PET to evaluate internal motion

Challenges for SBRT

How to accurately define target? --- 4D imaging

How to accurately localize target?

How to obtain conformal dose and steep dose gradients? ---3DCRT, Inverse Planning, IMRT, VMAT...

How to minimize dose to surrounding critical organs? --- Gating, Tracking...

Motion Analysis

- Analyze target motion in different phase
- Consistence of motion of fiducial markers with target
- Analyze target size and shape change
- Determine residual error and target margin for gating treatment

PTV : ITV +3~5mm margin

Liver example

Pancreas example

Loo et al. LIR

Motion Management (Delivery)

3DCRT or IMRT/VMAT?

- Advantages:
 - Better dose conformality
 - Easy to control/constrain dose to OARs
 - Inverse planning
- Disadvantages:
 - Higher MU, longer treatment time
 - Interplay effect between target and MLC motion

Coplanar or Non-Coplanar Beams?

Advantages:

- Better dose gradients in axial planes
- Disadvantages:
 - Complicated treatment
 - Longer treatment time
 - Potential collision

8-12 non-overlapped beams (1-2 partial arcs) on the disease side can generate acceptable dose performances for most lung SBRT cases.

Dose Calculation

- Inhomogeneity correction algorithms
- PBC is not appropriate for lung SBRT
 - AcurosXB, convolution/superposition, MC should be used
- Dose calculation grid <= 2mm
- Couch top should be inserted

Irradiating through the Couch Top (from straight below) is equivalent to 12 mm of water. Data for Brainlab Exactrac 6D couch top

TomoTherapy CSA S. E. Davidson et al. M

Inhomogeneity Correction

Dose difference for targets from PBC and AcurosXB could be more than 10%

- -----

PBC should not be used for lung SBRT

Target Localization & Plan Delivery

	Image-gui	ded Ta	arge	t Localization	
After Treatment	er en	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Se Se	Precion	
	A	TABLE IV: Achieval	le accuracies rep	orted in the literature categorized by body site and immobil	Ization/repositioning device.
	Accuracy	Autor, year	346	Wood frame/domestactic coordinates	Reported accuracy
Spine	1~3 mm	Las, 1994	Abdomes	on box to skin marks	3.7 mm Lat, 5.7 mm Long
Lung	-Emm	Hatalion, 1992	open	Francless/implaned fiducial markets with real-time	2 88
Lung	<0000	Murphy, 1997 ⁴	Spine	imaging and tracking	1.6 mm radial
Abdomen	<5mm	Long, 1999" Yenice, 2005"	Spine	Body cast with stereotacta: coordinates Contours absorbactic frame, and in-more CT raidance.	53.6 mm mean vector 1.5 mm restern accuracy, 2-3 mm positionian accuracy
7.600011011	Somm			MITH BodyFix with storeotactic frameTisacCT on rails	
		Chang, 2004	Spine	with 6D robotic coach	1 mm system accuracy
		Tokunye, 1997 Nakasiwa, 2000	Doneic	Prone position jaw and arm straps MVCT on line:	3 mm Nor prosted
Lung Ref	CT: Ave-IP 50% CT	Wulf, 2000 ⁸	Lang, liver	Eleka ^{na} body frame	3.3mm lat,4.4 mm long
Lang non					Bony anatomy translation 0.4, 0.1, 1.6 mm (mean
EBH-CT		Fass. 2004	Lane, liver	MITH BodyFix	X,Y,Z); tumor translation before image guidance 2.9, 2.5, 3.2 mm (mean X,Y,Z)
		Herfarth, 2001	Liver	Leibinger body frame	1.8-4.4 nm
Live/Panci	eas/Prostate:	Nagata, 2002 ⁴	Long	Elekta ^{the} body frame	2 mm
		Fukumoto, 2002	Long	Elekta ^{rse} body frame	Not reported
Fiducials		Hara, 2002*	Long	confirmatory scan	2 mm
		Hof, 2003*	Long	Leibinger body frame	1.8-4 mm
		Timmerman, 2003 ^e	Long	Elekta ^{tor} body frame	Approx. 5 mm
	AAPM Task Group NO. 101	Ware Soul	Lana	configure (0) transmission	03111 pp 48 -11132 pp 14 15137 pp 51

Target Positioning: Lung

Table 4 Intrafractio	n, interfraction, c	orrection resid	luals, and t	arget marj	gins by ir	nmobilization	device	,					100 In 90 - In	trafraction Variation
	Interfraction	Correction				Final position variation	2-parameter margins (mm)			4-parameter margins (mm)			of Patients 0 20 30	+
Туре	vector (mm)	(mm)	(mm)	2 mm	5 mm	(mm)	ML	AP	cc	ML	AP	сс	antage	
a-cradio	8.3 ± 5.0	2.2 ± 1.3	3.0 ± 1.7	71.6%	10.0%	2.9 ± 1.6	4.2	5.7	5.0	3.7	5.8	4.6	20 20	
Body frame	6.9 ± 5.2	2.3 ± 1.6	2.3 ± 1.4	49.0%	3.9%	2.2 ± 1.2	2.9	4.1	4.1	2.3	4.0	3.7	0 0.5 Intr	1 1.5 afraction Variation (cm)
BodyFIX	10.7 ± 8.7	2.4±2.4	3.0 ± 2.5	60.3%	15.1%	3.2±2.6	5.4	7.2	6.3	5.0	7.3	6.1		
None	7.8 ± 4.1	2.6 ± 1.7	3.3 ± 2.2	66.7%	19.2%	3.3 ± 2.2	4.4	6.5	6.9	3.9	6.7	6.5	Intra-fractio	on variation (m
Hybrid	12.6 ± 10.2	1.8 ± 0.9	2.7 ± 1.6	64.5%	8.4%	2.7 ± 1.5	3.6	5.1	5.1	3.1	4.6	4.2	AP	0.0±1.7
Wing board	7.4 ± 4.1	2.5 ± 1.2	3.3 ± 1.7	72.7%	15.9%	3.2 ± 1.6	4.5	5.7	6.2	4.2	5.1	5.8	SI	0.6±2.2 -1.0±2.0
AP, antero	posterior; CC, cr	aniocaudal; IF	∨, intrafrac	tion variat	ion; ML,	mediolateral.							3D	3.1±2.0

A total of 409 patients with 427 tumors underwent 1593 fractions of lung SBRT

Shah C et al PRI

Fluoroscopy Verification

Beam-Level Imaging: Verification of Geometric Accuracy

Intra-fraction Verification of SABR

- 20 SABR patients (lung/liver/pancreas) RPM-based gating treatment
- Geometric error: 0.8 mm on average; 2.1 mm at 95th percentile

Beam-Level kV Volumetric Imaging

- Continuous fluoroscopy during dose delivery In-house program for CBCT reconstruction
 20 lung SABR patients
 Treatment verification
 Routine clinical use
- - - Li R, Xing L et al, IJROBP. 2013

Beam-Level MV Volumetric Imaging

Summary

- 4D imaging is required for accurate motion management
- New techniques (Inverse planning, IMRT/VMAT, Gating/Tracking,...) can improve target conformity and critical structure sparing
- Patients should be positioned with IGRT
- Beam-level imaging is a necessary step to insure accurate SBRT delivery •

Question: Which following algorithm should NOT be used for a lung SBRT dose calculation?

20%	1.	Convolution/superposition
20%	2.	Pencil Beam Convolution
20%	3.	AcurosXB
20%	4.	Monte Carlo
20%	5.	None of above

10

Discussion

Correction Answer:

2. Pencil Beam Convolution

Reference:

S. E. Davidson, R. A. Popple, G. S. Ibbott, and D. S. Followill, "Technical note: Heterogeneity dose calculation accuracy in IMRT: Study of five commercial treatment planning systems using an anthropomorphic thorax phantom", Med. Phys. 35, 5434–5439 2008.

Question: What localization accuracy can be achieved in CBCT-guided spine SBRT?

20%	1. <1mm
20%	2. 1~3 mm
20%	3. 3~4 mm
20%	4. 4~5 mm
20%	5. >5mm

Discussion

Correction Answer:

2. 1~3mm

Reference:

P. C. Gerszten et al, "Prospective evaluation of a dedicated spine radiosurgery program using the Elekta Synergy S system", J Neurosurg. 113:236–241, 2010

1.1 ±0.7mm

E. L. Chang et al, "Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases", Int. J. Radiat. Oncol., Biol., Phys. 59, 1288–1294 2004.

<1mm in AP, Lat, and SI direction

10