ACR MRI Accreditation Update www.acr.org Whole Body System Extremity (MSK Ron Price Dedicated Breas Vanderbilt University Medical Center Nashville, TN

ACR MRI Accreditation Update

- 1. ACR MRI Accreditation Program (Purpose, Status and Role of the Medical Physicist)
- 2. Impact of CMS/MIPPA and JC Requirements
- 3. ACR MRI Application Specifics (Whole-body modular, Extremity and Breast)
- 5. 2015 ACR MRI Quality Control Manual (Technologist and Medical Physicist Responsibilities)
- 6. MRI Safety Requirements: ACR/Joint Commission

ACR MRI Accreditation Program

- for "best
- practice" and to help continuously improve the quality of patient care. Primary components of the ACR program are the evaluation of:
- Qualifications of all personnel (Physicians, Physicists and Technologists)
- Equipment performance Effectiveness of quality control and patient safety measures
- Quality of clinical images

Accreditation Milestones

- 1996: Voluntary Whole-body/Cardiac MRI accreditation with "Large" QA phantom
- 2008: Modular program (Head, Spine, MSK, Body, MR 2008: "Small" phantom for dedicated extremity systems
- 2010: Breast MRI Accreditation
- 2015: Joint Commission Revised Requirements for Diagnostic Imaging Services

ACR Status (6/29/15)

- ~20% Fully Electronic Submissions

Impact of CMS/MIPPA Requirements

The Centers for Medicare and Medicaid Services (CMS/MIPPA*) requires that all facilities providing Advanced Diagnostic Imaging (ADI)*** services that are billed under Part B of the Medicare Physician Fee Schedule by one of the (4) CMS approved accreditation organizations by January 1, 2012

- American College of Radiology (ACR)
- Joint Commission (JC)
- Intersocietal Accreditation Commission (IAC)
- RadSite (RS) (2013)

MIPPA: Medicare Improvements for Patients and Providers Act ADI: MRI, CT and Nuclear Medicine/PET

1

ACR Accreditation Application Specifics

https://acredit.acr.org/

The accreditation process consists of two phases:

Phase 1: Account Activation (Must be completed online.)

Phase 2: <u>Application</u> (Image submission either online or mailed CDs.)

Modular whole-body and extremity magnets the application requirements: • Planton and Clinical Images

Physicist's Equipment Performance Report for each magnet (< 1 year), <u>documentation</u> of corrective actions and most recent quarter of technologist's weekly QC documents

Breast MRI application requirements. Note: currently no phantom images.

Physicist's Equipment Performance Report for each magnet (< 1 year), <u>documentation</u> o orrective actions and most recent quarter of technologist's weekly QC documents

Lar	ge Phantom ACR Limits: Unchanged
(FOV = 25 cm, 25	56X256)
Dimensional accuracy (Sagittal)	148 ± 2 mm
Dimensional accuracy (Axial)	190 ± 2 mm
Slice Thickness	5 ± 0.7 mm
Slice Position	<u>≤ 5mm</u>
Image Uniformity (PIU)	≥ 87.5% (< 3T)
	≥ <u>82.0% (3T)</u>
Percent Signal Ghosting	≤ 2.5%
High-contrast Resolution	1 mm
Low-contrast Detectability Score	≥9 (<3T)
	≥ 37 (3T)
Sn	nall Phantom ACR Limits: Unchanged
(FOV = 12 cm, 1	(52X192)
Dimensional accuracy (Sagittal)	100 ± 2 mm
Dimensional accuracy (Axial)	100 ± 2 mm
Slice Thickness	5 ± 0.7 mm
Slice Position	≤ 5mm
Image Uniformity (PIU)	≥ 87.5% (< 3T)
Percent Signal Ghosting	≤ 2.5%
High-contrast Resolution	<u>0.8 mm</u>

Medical Physicist	Assistance with Cli	nical Images
Examination choices for MR Accr	editation by module (specialty examin	ations denoted by asterisk*)
Head/Neck Brain for transient ischemic attack (TIA) Internal auditory canal (IAC/temporal bone) for hearing loss Brain for suspected demyelinating disease* Pitultary with dynamic contrast enhancement* Orbits for vision loss*	Spine - Lumbat Spine - Thoracic Spine - Cervical Spine " - Cervical Spine with contrast for intramedullary disease"	MSK Knee such as for internal derangement Shoulder such as for internal derangement Wrist such as for internal derangement [*] Elibow such as for internal derangement [*] Forefoot for Morton's neuroma [*]
Body	MRA	Cardiac
Male pelvis such as for prostate cancer Renal Hepatobiliary to Include MRCP* Female pelvis such as for uterine or adnexal disease*	Brain Carotid Thoracic aorta Distal peripheral runoff High resolution arch and carotid* Abdomen for renal artery stenosis*	Black blood Basic Delayed enhanced cine 1 Delayed enhanced cine 2 Delayed enhanced cine + black blood*
The physicist should confirm t clinical sequences meet the re parameters defined in the ACP Typical requiremen	hat the submitted squired acquisition R Quality Guide. hts: 4-6 exams per scanner depend	Accreditation Program cal Image Quality Guide

2-Weighte Fluid Se 2D min,	d/Bright eries	Pre-Cont	ast T1	Early Phase (1 Contrast	*) Post- T1	Delayed Ph Post-Con	iase (last) trast T1
2D min,	30	2D	30				
2D min,	30	2D	30				
2D	30	2D	30				
min,				2D [3D	2D	3D
min,							
	SEC	min,	sec	min,	sec	min,	50
	mm		mm		mm		mm
	mm		mm		mm		mm
	mm		mm		mm		mm
	mm		mm		mm		mm
	msec		msec		msec		msec
	msec		msec		msec		msec
		đ	egrees	de	grees		tegrees
mse	c 🗌 NA						
rast T1	-weight	ed serie	s, the fo	ollowing pa	mmen	ded in Pl	e me ane Pi
	mee rast T1	mm mm msec msec Msec NA rast T1-weighte	ma m	mm mm mm mm mmec macc meec macc macc MA mat T1-weighted series, the fo	mm	mm mm mm mm mm mm mm msc msc msc msc msc msc døgres døgres rast T1-weighted series, the following parameter	mm mm mm mm mm mm mm mm msc msc msc msc MA ast T1-weighted series, the following parameter (mss Maximum Recommended in Pl

ACR Breast Accreditation Clinical Images (review DICOM beader)

Technologist's Quality Control Testing (Action Limits Determined by the Medical Physicist)

A. Quality Control Testing Frequency

The technologist's QC testing procedure frequencies given in Table 1 and in the rel of this manual are the minimum recommended frequencies. However, we stronger recommend that the tests be done on a duly basis. If problems are detected often, if the equipment is unstable, or if the system has just been subject to a significant repair or upgrade, then it may be necessary to carry out some of the procedures more frequently. Table 1. Minimum Frequencies of Performing Technologist's QC Tests Procedure Weekly Table Position Accuracy * 3 Center Frequency/Transmitter Gain or Attenuation Geometric Accuracy Measurements Weekly Weekly High

High-Contrast Spatial Resolution	Weekly	1
Low-Contrast Detectability	Weekly	2
Artifact Evaluation	Weekly	1
Film Printer Quality Control (if applicable)	Weekly	10
Visual Checklist	Weekly	5

Medical Physicist's Annual Performance Testing

ACR

2015

Magnetic Resonance Imaging

- Annual Physics Report must include <u>verification of</u> technologist weekly QC measurements (repeated at 1 annual visit)
- <u>Annual Physics Report</u> must include evaluation of all pulse sequences required for accreditation submission 3 Additional methods for field homogeneity:

Spectral Peak Phase-angle Difference

- Additional methods (NEMA) for SNR, PIU and PSG
- 6 Additional information on testing multi-element coils

dical Physics Annual Performance Report Must Include Field homogeneity assessment

- Acquisition monitor assessment Assessment of coil performance (comparison to prior year or reference)

X X X	
X X	
X	
X	
x New	
X	
X	
X	
X	
	r x
	Х
	Х
	X
Same	X
	Х
	X
	LX
	x x x x Same

Field Homogeneity

- Spectral FWHM with large sphere (Only global sensitivity)
- Phase-Difference Method (2D or 3D homogeneity maps)

(Chen, et al Med. Phys. 33 (11), 2006. Note: only sensitive along frequency axis.)

Spherical phantoms are recommended for all methods. Homogeneity should be specified for largest spherical volume (DSV) available.

Alternative: For systems that do not allow any of these methods. One may use the service engineer's most recent shim report (< 6 month).

Phase-Map Method

Gradient Echo Sequence: TE ~ 1/resonance frequency (ppm) (e.g. 1 ppm @ 1.5T = 1/63 Hz = 15.6 ms)

TE = 20 ms ~ 0.4 ppm/transition

The field homogeneity (ΔB_0) is determined by counting the number of transitions and then multiplying by the ppm/transition for the specific TE.

For single-image SNR methods, to improve reproducibility image intensity correction should be **off** e.g. SCIC, CLEAR and PURE. Algorithms can significantly affect the background noise (σ_{air}) estimate and thus the calculated SNR.

With intensity correction

Surface Coil SNR Measurements: (Annual Testing)

Original manual recommendation was to use phantom geometry that best matched the coil and to measure the . In order to y, recommendation is to measure improve year-to-year and to use the largest RC the

Testing Coil Arrays (Annual Performance Testing)

The 2015 ACR MRI Manual recommends that the images from each coil element be reconstructed and evaluated individually (if possible) to check for malfunctioning elements.

Dead Coil Element in 8-channel array

Images Courtesy of Ed Jackson

MRI Safety

- Site Access Restrictions (MR Zones*)
- Documented MR Safety Education/Training for all personnel*
- Patient and non MR Personnel Screening
 MRI Safety policies as recommended by ACR guidance documents

(contrast, quench, pregnancy, RF burns, ...) <u>ACR Guidance Document for Safe MR Practices</u>: E. Kanal, et al, <u>JMRI</u> 37:501–530 (2013)

the ACR requirements.

- Written policies are present, available to staff and reviewed on regular basis
 Facility has appropriate signage and methods of controlled access.
 Documentation of regular MR safety training for all MR personnel

Standard EC.02.01.01 The (critical access) hospit **Revised Requirements for** as estatu and security **Diagnostic Imaging Services** Note: The Joint Commission revised requirements for MRI safety are similar to

 Benents of Performance for EC.02.01.01
 A 14. For [critical access] hospitals that provide magnetic resonance imaging LNRU services. The [critical access] hospital magnets after yrisis in the NIR environment hospital magnets after yrisis in the NIR environment - Posting signage at the entrance to the MRI scanner • etc.

	1 MRI Safety Program Assessment Checklist
ACR MRI Safety Checklist Excel Form	MRI Safety Program Assessment Checklist MRI Safety Program Assessment Checklist Ster Teadury and the model of addresses the billowing: YeuflickLi Descrimeted KRI Safety Academic Safety and Descrimeted KRI Safety Academic Safety Descrimeted KRI Safety
	10 2. Selations 10 Thermal family procedures 10 Thermal family procedures 11 Thermal family procedures 12 Despring of the sub-Reconcisional status 13 Despring of the sub-Reconcisional status 14 Despring of the sub-Reconcisional status 15 Despring of the sub-Reconcisional status 16 Reference status 17 Respring of the sub-Reconcisional status 18 Despring of the sub-Reconcisional status 19 Reference status 10 Reference status 11 Respring of the sub-Reconcisional status 12 Particid status 13 Reference status 14 Reference status 15 Particid status 16 Reference status 17 Reference status 18 Reference status 19 Reference status 10 Reference status 11 Reference status 12 Referencon compliance: 14<
	2 Vitters pictores are prevent and ready anaload resident states. 2 Vitters pictores are interest and pictores (an insight basis) 3 Factly tas appropriate UR safety saming signage and methods of controlled access. Overall Pass/Fall Comments
	A A

Conclusion and Comments

- The 2015 ACR MRI Quality Control Manual has relatively minor changes from the 2004 version. Specific tests are basically the same but with more options and additional testing detail. Compliance required one year from publication date: 7/1/2016.
- The 2015 QC manual includes several NEMA testing methods as options and is intended to be consistent with new Joint Commission recommendations and with AAPM Report 100.
- The 2015 manual does not identify a specific method for testing parallel imaging. However, it is recommended that images from each coil element be reconstructed and evaluated individually in order to confirm that all elements are functional.
- There is an increased emphasis on MRI safety to minimize patient risk.