CT Lung Cancer Screening and the Medical Physicist:
Background, Findings and Participant Dosimetry Summary of the National Lung Screening Trial (NLST)

Randell Kruger, PhD, DABR
Medical Physics Section Head, Radiology, Marshfield Clinic, Marshfield, Wisconsin

The author wishes to acknowledge and thank the participants, medical physicists, technologists, and research coordinators whose efforts were invaluable to the successful completion of this project.

Introduction and Background

- Lung Cancer Statistics (American Cancer Society, ACS)¹
 - Excluding skin cancer, lung cancer is the second most common cancer for both men and women in the US
 - 13% of all new cancers (2015 estimate: 221,200 new cases)
 - 27% of all cancer deaths (2015 estimate: 158,040 deaths)
 - More people die from lung cancer than from colon, breast, and prostate cancer combined

 [Percent of New Cases by Age Group]

 *National Cancer Institute SEER 18 2005-2012, All Races, Both Sexes
Introduction and Background

- Lung Cancer Risk (US Preventive Services Task Force, USPSTF)³
 - 85% of new cases are current or former heavy smokers
 - Age is a risk factor, average age at diagnosis is 70
 - Poor prognosis, 90% with lung cancer die of the disease
 - 75% of patients present with advanced local or metastatic disease
 - 17.4% of patients survive 5-years or more after diagnosis

Five Year Relative Survival

³National Cancer Institute SEER 18 2005-2011, All Races, Both Sexes

Introduction and Background

- Lung Cancer Screening – Chronological Review
 - American College of Radiology (ACR)
 - Lung cancer screening center designation (2014)
 - US Preventive Services Task Force (USPSTF)
 - Final approval for annual CT screening (2013)
 - B recommendation, screening covered as a preventive service under the Affordable Care Act
 - National Lung Screening Trial (NLST)
 - Finding and conclusions published 2011-2013
 - Trial period: August 2002 – April 2004
NLST Introduction

- NLST introduction
 - Randomized controlled trial funded by the National Cancer Institute, conducted by two organizations
 - Lung Screening Study (LSS)
 - American College of Radiology Imaging Network (ACRIN)
 - Recruited 53,439 asymptomatic participants that were randomly assigned to one of two study groups
 - Chest radiography (CXR)
 - 26,724 participants
 - 73,733 exams acquired
 - 92 chest imaging systems
 - Low Dose Computed Tomography (LDCT)
 - 26,715 participants
 - 75,133 exams acquired
 - 97 multidetector CT scanners

NLST Demographics

- NLST participant demographics
 - Eligibility criteria
 - Smoking history: current or former heavy smokers with at least a 30 pack-years of cigarette smoking (former smokers within last 15 years)
 - 47% of participants had a >50 pack-year smoking history
 - Participants annually screened for three years
 - Compliance rate 98.5%
 - Age: 55 to 74
 - Males: 31,523 (59%)
 - Females: 21,916 (41%)
 - Multi-centered trial
 - 33 screening centers
 - Enrollment period: 8/02 - 4/04
 - Screening period: 8/02 - 9/07
 - Event reporting through 12/09
 - Findings published 2011-2013
NLST Objectives and Findings

- NLST objective
 - Determine whether lung cancer screening using low-dose multidetector helical CT reduces lung cancer-specific mortality relative to a single view chest radiograph in a high-risk cohort

- NLST findings
 - Reduction in mortality from lung cancer achieved based on low-dose CT screening
 - Demonstrated a 20% reduction in mortality in high-risk patients

NLST CT Summary

- Summary of 97 CT systems utilized

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th># Scanners</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electric Healthcare</td>
<td>LightSpeed Plus 4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>LightSpeed Discovery 4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>LightSpeed Qti 4</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>LightSpeed Ultra 8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>LightSpeed 16</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>VCT 64</td>
<td>1</td>
</tr>
<tr>
<td>Philips Healthcare</td>
<td>MX8000 (4)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>MX8000 (16)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Brilliance 64</td>
<td>1</td>
</tr>
<tr>
<td>Siemens Healthcare</td>
<td>Sensation 4 (Volume Zoom)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sensation 16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Emotion 16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sensation 64</td>
<td>2</td>
</tr>
<tr>
<td>Toshiba</td>
<td>Aquillion 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Aquillion 16</td>
<td>3</td>
</tr>
</tbody>
</table>
NLST CT Summary

CT participant screening parameters

<table>
<thead>
<tr>
<th>NLST Specification</th>
<th>Typical Site Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi detector CT - minimum 4 channels</td>
<td>4 or 16</td>
</tr>
<tr>
<td>kVp - 120 to 140</td>
<td>120</td>
</tr>
<tr>
<td>Pitch - 1.25 to 2.00</td>
<td>1.5</td>
</tr>
<tr>
<td>Effective mAs (mAs / pitch) - 20 to 60</td>
<td>20 - 40</td>
</tr>
<tr>
<td>Total Scan Time (35 cm) - max 25 sec</td>
<td>10 - 20 sec</td>
</tr>
</tbody>
</table>

NLST CT Summary

ACR lung cancer screening specifications

<table>
<thead>
<tr>
<th>Scan Parameter</th>
<th>Parameter Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT scanner type</td>
<td>multidetector, detector rows ≥ 4</td>
</tr>
<tr>
<td>kV</td>
<td>100 - 140</td>
</tr>
<tr>
<td>Pitch (IEC Definition)</td>
<td>0.7 - 1.5</td>
</tr>
<tr>
<td>Current adjustment</td>
<td>manual or automatic (patient size)</td>
</tr>
<tr>
<td>CTDIvol</td>
<td>CTDIvol(standard size patient) ≤ 3 mGy</td>
</tr>
</tbody>
</table>
NLST CT Summary

- Measured CTDI$_{vol}$ for CTs used in NLST

![CTDI$_{vol}$ graph]

Average CTDI$_{vol}$ = 3.3 mGy (Std Dev = 1.5 mGy)
Published in AJR, November 2011

NLST CXR Participant Dosimetry: Introduction

- Chest radiography participant dose study published
 - AJR, July 2013
- Study Objective
 - Determine effective dose associated with individual NLST chest x-ray examinations
NLST CXR Participant Dosimetry: Methods and Materials

- **CXR Quality Control (QC)**
 - 92 CXR acquisition systems at 33 sites
 - Included film-screen, CR and DR devices
 - Certification requirements were adapted from published ACR standards and consensus among the participating facilities
 - Initial and annual QC activities
 - Focused on verification of output calibration
 - Machine-specific measurements (annually)
 - HVL and radiation output (mR/mAs)

NLST CXR Participant Dosimetry: Methods and Materials

- NLST CXR protocol specified the collection of a participant’s acquisition parameters
 - Imaging parameters
 - Tube potential,
 - Current and mAs
 - Exposure time
 - Detector system
 - Participant factors
 - Height and weight
 - Average BMI = 28
NLST CXR Participant Dosimetry: Methods and Materials

- Monte-Carlo program
 - PCXMC, developed by the Finnish Radiation and Nuclear Safety Authority, Helsinki, Finland
 - PC based special purpose code for diagnostic radiology only dose calculations
 - Hermaphrodite mathematical phantom
- Effective dose assessment methodology
 - Product of exam entrance skin air kerma (ESAK) and the ratio [effective dose per ESAK]
 - Exam ESAK is the product of mAs and average x-ray tube output, measured annually by medical physicist

NLST CXR Participant Dosimetry: Results and Conclusions

- 73,733 CXR examinations performed
- A CXR effective dose assessment was determined based on 66,157 exams
 - Data from 31 sites utilizing 90 CXR systems
 - Data from 26,732 CXR participants utilized
 - Mean Effective Dose (ED): 0.052 mSv
- Variations in tube potential and filtration had a minor influence on assessed ED
 - ED changed <20% at the max/min boundaries
NLST CXR Participant Dosimetry: Results and Conclusions

Comparison to other published studies

<table>
<thead>
<tr>
<th>Study or Location</th>
<th>Effective Dose (mSv)</th>
<th>Reference</th>
<th>View</th>
<th>Effective Dose Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Cancer Institute for Prevention, Oncology, and Education (NCI)</td>
<td>0.016</td>
<td>11</td>
<td>Posteroanterior</td>
<td>Coefficient of variation, 39%</td>
</tr>
<tr>
<td>National Lung Screening Trial (NLST)</td>
<td>0.025</td>
<td>21</td>
<td>Posteroanterior</td>
<td>0.054 (0.007) in 0.5 mSv</td>
</tr>
<tr>
<td>NLST-CARR, Japan (2001)</td>
<td>0.037</td>
<td>12</td>
<td>Multi-detector</td>
<td>Variance range, 0.09-0.14 mSv</td>
</tr>
<tr>
<td>National Lung Screening Trial (NLST)</td>
<td>0.037</td>
<td>13</td>
<td>Multi-detector</td>
<td>Variance range, 0.09-0.14 mSv</td>
</tr>
<tr>
<td>Norwegian (2004)</td>
<td>0.046</td>
<td>15</td>
<td>Posteroanterior</td>
<td>Variability not reported</td>
</tr>
<tr>
<td>NLST-CARR, Netherlands (2004)</td>
<td>0.063</td>
<td>13</td>
<td>Multi-detector</td>
<td>Variance range, 0.10-0.16 mSv</td>
</tr>
<tr>
<td>NLST-CARR, Norway (2004)</td>
<td>0.033</td>
<td>13</td>
<td>Multi-detector</td>
<td>Variance range, 0.09-0.14 mSv</td>
</tr>
<tr>
<td>NLST-CARR, Sweden (2001)</td>
<td>0.056</td>
<td>13</td>
<td>Multi-detector</td>
<td>Variance range, 0.10-0.16 mSv</td>
</tr>
<tr>
<td>NLST-CARR, Germany (2000)</td>
<td>0.071</td>
<td>13</td>
<td>Multi-detector</td>
<td>Variance range, 0.10-0.16 mSv</td>
</tr>
</tbody>
</table>

Note: [Reference to the National Scientific Commission on the Effects of Radiation Exposure]

Questions?

Cited and significant references: