U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health A Dosimetry Summary of CT Participants in the National Lung Screening Trial (NLST)

AAPM 2015 Anaheim, CA Choonsik Lee

Background

National Lung Screening Trial

- Overview
 - Compares two ways of detecting lung cancer: CT vs. chest x-ray
 - 53,454 current or former heavy smokers (ages 55 74)
 - Found that CT screening will reduce lung cancer mortality 15-20% more than chest X-rays*
- However, potential risks from CT radiation need to be considered for risk-benefit profile, which requires <u>individualized organ dose assessment</u>.

Dose descriptors from CT scan

- Computed Tomography Dose Index (CTDI)₁₀₀
 - 100-mm long ion chamber measurement for a single axial rotation
- $CTDI_w = 1/3 CTDI_{100,center} + 2/3 CTDI_{100,peripheral}$

Dose descriptors from CT scan

Patient Name: Accession Number: Patient ID: Exam Description: PRE/POST KIDNEY Exam no: 215 Feb 14 2008 LightSpeed VCT

		Dose R	eport		
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy-cm)	Phantom cm
1	Scout		-	-	
2	Axial	S0.000-197.500	94.69	946.93	Head 16
2	Helical	I61.650-I101.650	60.81	371.96	Head 16
2	Cine	S12.490-I2.510	121.14	242.29	Head 16
3	Axial	S0.000-197.500	94.69	946.93	Head 16
3	Helical	I61.650-I101.650	60.81	371.96	Head 16
3	Cine	S12.490-I2.510	121.14	242.29	Head 16
		Total	Exam DLP:	3122.36	

Dose descriptors from CT scan

$$E (mSv) = DLP(mGycm) \times k \left(\frac{mSv}{mGycm}\right)$$

Table 3. Normalized values of effective dose per dose– length product (DLP) over various body regions and (standard) patient ages [33]

Region of body	Effective dose per DLP (mSv (mGy cm) $^{-1}$) by age								
	0 year old ^a	1 year old ^a	5 year old ^a	10 year old ^a	Adult ^b				
Head and neck	0.013	0.0085	0.0057	0.0042	0.0031				
Head	0.011	0.0067	0.0040	0.0032	0.0021				
Neck	0.017	0.012	0.011	0.0079	0.0059				
Chest	0.039	0.026	0.018	0.013	0.014				
Abdomen and pelvis	0.049	0.030	0.020	0.015	0.015				
Trunk	0.044	0.028	0.019	0.014	0.015				

* Shrimpton et al. BJR (2006), AAPM TG Report No. 96 (2008)

CTDI_{vol} vs. organ dose

Organ dose per CTDI_{vol} 32 cm (AP scan of adult male)*

Two approaches to organ dose estimation in CT

MEASUREMENT

- Reliable
- Expensive
- Substantial man-hour
- Not flexible

- Validation required
- Cost-effective
- Fewer man-hour
- More flexible

CT Dosimetry Programs

Existing CT dose calculators are limited to fixed-size stylistic phantom and not designed for a large scale dosimetry.

ImPACT CT Dosimetry Calculator (NRPB)

CT-expo dose calculator

More recent developments: <u>WAZA-ARI</u> (Japan)

- Under beta testing
- Japanese adult male/female
- Web-interface

More recent developments: <u>VirtualDose[™]CT</u> (Virtual Phantoms[™] Inc)

- Commercial solution
- Pediatric/adult phantoms

VirtualDose is a software tool designed for radiologists, technologists, medical physicists, regulators, manufacturers and researchers who need to calculate and analyze patient radiation doses from exposures such as diagnostic CT examinations.Product is currently under testing. If you are interesting becoming a tester, please register.

More recent developments: <u>eXposure™</u> (Radimetrics[™] Inc)

- Commercial solution
- Advanced interface between dosimetry tool and PACS
- Adopted by a large number of clinical centers worldwide
- Based on pediatric and adult stylized phantoms

More recent developments: <u>GPU-based</u> on-site dose calculation

- Calculate dose distribution right after CT images are reconstructed.
 - Kalender et al. (Germany)
 - Xu et al. (RPI, USA)
- Not appropriate for epidemiologic study
 - Only provide 3D dose distribution
 - Organ segmentation is required for organ dose calculation

ICRP Reference Pediatric and Adult Phantoms

Scanner-independent organ dose

Organ Dose 1	~	Organ Dose 2	~	Organ Dose 3
CTDI _{vol1}	=	CTDI _{vol2}	=	CTDI _{vol3}

*COV less than 5% (Turner et al. MP 2010)

Algorithm for organ dose calculations

National Cancer Institute dosimetry system for Computed Tomography (NCICT)*

*Lee et al. Medical Physics (in review)

CT scanner modeling

Monte Carlo dose calculations

- Phantoms were coupled with a CT scanner simulation model* within a Monte Carlo transport code, MCNPX2.7.
- Organ dose normalized to CTDI_{vol} (mGy/mGy) were calculated using a computing server (Mac Pro)

Dose conversion coefficients

- Dose coefficients calculated for a series of axial scans.
- Organ doses for a given scan range were approximated as the sum of doses from multiple axial slices included in the scan range of interest.

	- 0
Organ absorbed	l dose (mGy)
	Dose (mGy)
Brain	0.104
Pituitary gland	0.121
Lens	0.095
Eye balls	0.087
Salivary glands	0.457
Oral cavity	0.28
Spinal cord	3.826
Thyroid	9.213
Esophagus	5.73
Trachea	7.058
Thymus	8.077
Lungs	7.175
Breast	6.599
Heart wall	7.622
Stomach wall	7.812
Liver	7.554
Gall bladder	7.184
Adrenals	0
Spleen	7.569
Pancreas	7.057
Kidney	7.853
Small intestine	8.041
Colon	8.332
Rectosigmoid	5.862
Urinary bladder	5.638
Prostate	1.6
Uterus	0
Testes	0.165
Ovaries	0
Skin	2.929
Muscle	3.175
Active marrow	4.277
Shallow marrow	3.343
E60	5.353
E103	20 5.811

aph

bboard

Close

Objectives

Method Development

• To extend the NCICT program to body size-specific computational phantoms

Application

- To calculate individualized organ doses in CT screening for a subset of the total NLST cohort
- To compare organ doses based on <u>reference size phantoms</u> vs. <u>size-specific phantoms</u>

Materials and Methods

CT scan data collection from the NLST

- 23,773 CT scans (body size available) identified.
- Patient ID, gender, <u>height, weight</u>, scan length, kVp, and CTDI_{vol} were collected from DICOM data.
- 9,406 females and 14,367 males
- Mean height: 173 cm (125 231 cm)
- Mean weight: 84 kg (39 202 kg)

ICRP Reference Adult Phantoms

Body size-dependent computational phantoms*

*Geyer et al. Phys Med Biol 2014

Body size-dependent computational phantoms*

100 male and 93 female phantoms were used to calculate organ dose conversion coefficients (mGy/mGy)

Body size-specific dose conversion coefficients

 Organ dose conversion coefficients (mGy/mGy) were calculated for 100 male and 93 female adult phantoms

Organ dose calculations

- Thyroid, heart, and lung doses calculated for 23,773 NLST CT scans using:
 - Reference size phantoms ignoring patient body size
 - Body size-specific phantoms using patient body size

Batch Module in NCICT-X (with or without CTDI_{vol})

C	Manual abstraction v2 (dose 5-25-2011),xlsx - Microsoft Excel													
	Home	Insert	Page Layout	Formulas	Data	Review	View Ad	d-Ins A	crobat					
ľ	Cut		Calibri	• 11 • A	A A	= = >] 📑 Wraj	o Text	General	*				
Past	e 🍼 Format	t Painter	BI <u>U</u> ,	- 🖉	<u>A</u> - ≡	≣ ≣ ∰	📰 🔤 Merg	ge & Center	- \$ - %	• • 00 .00 • 00 → 0	Conditiona Formatting	al Format * as Table * S	Cell Inse tyles • •	rt De
	Clipboard	G	F	ont	G.	Ali	gnment		S Nur	nber 🖻		Styles		C
	B1 - free studyid													
	В	С	D	E	F	G	Н		J	К	W	Х	Y	-
1	studyid	bodypa	🖌 make 🕞) model 💌	ageate:	Scan_le	Gender	kVP 🛛	🖌 mAs 🛛 🔽	Pitch 🕞	C Divo 🔽	Brain 🛛 🔽	Pituitary 🔽	Lens
522	4	-	1 1	. 5	2	14	2	12	340	1	40.12	36.1585	30.9944	39.
523	7	l	5 1	. 5	12	33.5	2	12	200	2	6.2	0.00744	0.00523	0.0
524	7	1	5 1	. 5	12	40	2	12	200	2	6.2	0.00776	0.00523	0.0
525	8	-	1 1	. 2	2	4	1	12	280	1	40.88	5.7916	1.2771	0.3
526	8	-	1 1	. 2	2	5.5	1	12	280	1	40.88	13.7528	3.01622	1.0
527	9	3	3 1	. 5	7	12.3	1	12	0 400	1.5	1.4667	3.01278	2.46384	1.6
528	9	3	3 1	. 5	7	21.5	1	12	0 400	1.5	1.4667	3.27413	2.66328	1.8
529	10	1	5 1	. 5	7	17.5	2	12	0 160	2	9.44	0.01501	0.01108	0.0
530	20	ļ	5 1	. 5	2	20	2	12	240	1	28.32	0.08401	0.09209	0.1
531	30	3	3 1	. 5	12	23.5	1	12	0 160	1.5	6.6133	0.70398	0.59784	0.4
532	30	3	3 1	. 5	12	28	1	12	0 160	1.5	6.6133	0.71311	0.6042	0.4
533	30	-	1 1	. 2	20	8	2	12	240	1	35.04	11.1829	4.57886	1.1
534	30	-	L 1	. 2	20	8	2	12	240	1	35.04	11.1829	4.57886	1.1
535	30	-	L 1	. 2	20	5.5	2	12	280	1	40.88	7.4749	2.626	0.
536	30	-	1 1	2	20	5.5	2	12	280	1	40.88	7.4749	2.626	0.
F 0 7	~7			4	4.0	~~ F F	~	4.0	al 4.46		14 0070	0.04.050	0.04050	0.0

Results

NCICT-eXtended

Dose (organ, slice, 6 ages, 2 genders, spectra)

Dose (organ, slice, pediatric/adult, height, weight, spectra)

• Full calculation of dose coefficients took 7 months and incorporated into NCICT-eXtended program.

Organ dose conversion factors

 We established a comprehensive library of organ doses normalized to CTDI_{vol} (mGy/mGy) for reference and sizespecific adult phantoms.

<u>Reference Library</u> 31 organs

176 slices max

2 genders 6 X-ray spectra

Extended Library 31 organs 190 slices max 7 height bins 19 weight bins 2 genders 6 X-ray spectra

Results: Size-specific organ doses for NLST

Thyroid dose distribution

Results: Size-specific organ doses for NLST

Heart dose distribution

Results: Size-specific organ doses for NLST

Lung dose distribution

Previous study based on CT-Expo

F.J. Larke, R.L. Kruger, C.H. Cagnon, M.J. Flynn, M.M. McNitt-Gray, X. Wu, P.F. Judy, and D.D. Cody, "Estimated Radiation Dose Associated With Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial," AJR **197**(5), 1165–1169 (2011).

Unrealistic thyroid location

Visible Human Project Anatomy

ORNL Stylized Phantom

*C Lee and J Lee Medical Physics (2004)

Results: Lung dose comparison

Results: Lung dose comparison

Ratio of lung doses from reference phantoms to those from size-specific

Conclusion

- We developed a method to estimate patient size-specific organ doses.
- We calculated individualized organ doses for 23,773 CT scans involved in the NLST.
- The established dose conversion factors can be also used for other studies including patient dose monitoring and epidemiological studies of cancer risk.

Future work

- Include additional organs
 - Ovaries and uterus in adult female patients
 - Fetus dose in pregnant female patients in different pregnancy stages

University of Florida Pregnant Woman Phantoms*

*Maynard et al. PMB (2014)

Which of the following information from the patient records was most useful in organ dose assessment for the chest CT arm of the trial?

^{1%} 1. Tube current-time product (mAs)

- 0% 2. Tube potential (kVp)
- 95% **3. CTDI**_{vol} (mGy)
- ^{1%} 4. Scanner model
- ²% 5. Scan length (cm)

Answer: 3. CTDI_{vol}

Reference: C Lee, M Flynn, PF Judy, W Bolch, D Cody, and R Kruger, "Organ and effective dose assessment for participants in the National Lung Screening Trial (NLST) receiving a chest CT screening examination," (in preparation) Mean lung dose of the NLST low dose CT patients was about:

<mark>5%</mark>	1. 0.1 mGy	
58%	2. 2 mGy	
36%	3. 5 mGy	
1%	4. 10 mGy	
0%	5. 20 mGy	

Answer: 3. 5 mGy

Reference: F.J. Larke, R.L. Kruger, C.H. Cagnon, M.J. Flynn, M.M. McNitt-Gray, X. Wu, P.F. Judy, and D.D. Cody, "Estimated Radiation Dose Associated With Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial," AJR **197**(5), 1165–1169 (2011). Dose calculation methods based on the reference size phantoms _____ lung doses of obese (BMI >30) CT patients in the trial.

1%	1.	Accurately	estimated
----	----	------------	-----------

- 63% 2. Overestimated up to 60%
- 8% 3. Overestimated up to 200%
- 26% 4. Underestimated up to 60%
- ^{2%} 5. Underestimated up to 200%

Answer: 2. Overestimated up to 60%

Reference: C Lee, M Flynn, PF Judy, W Bolch, D Cody, and R Kruger, "Organ and effective dose assessment for participants in the National Lung Screening Trial (NLST) receiving a chest CT screening examination," (in preparation)