Quality Management
Determined from Risk Assessment

Bruce Thomadsen
University of Wisconsin
and
The Center for the Assessment
of Radiological Sciences
Disclosure

I am the President of the Center for the Assessment of Radiological Sciences, a non-profit Patient Safety Organization listed with the Agency for Healthcare Research and Quality. The Center is dedicated to improving patient safety in radiotherapy and radiology.
Learning Objectives

To understand how to approach developing a QM program from a risk analysis:

1. Redesign to eliminate potential failures,
2. Ensure resources and key core components,
3. Fix environment and technical problems
4. Commission well and add QC and QA
So, What to Do

- After making the fault tree. What now?
- Address the potential failures.
What to Do?

- Start with the branches of the fault tree with either highest PRN or S.
- Wherever you start, you will consider all the possible failure modes until prevention is not worth the resources.
- So, if you are off in your values for the FMEA, not a big deal.
- Pay particular attention to common causes.
Fault Tree for Prostate Implants with Loaded Needles

Don’t worry about reading it, this is for scale.
Generalization about Fixes

The prevention of events can be by:

- Eliminating progenitor causes,
- OR
- By interrupting the propagation.

- Patient Misidentified

- Human error: Omission - Time out not performed

- Training - patient identified incorrectly
Example of a Common Progenitor Cause

- Incorrect activity calculation
- Failure selecting date and time for treatment
- MP error reading spreadsheet
- Misunderstanding of spreadsheet. Poor training
- Poor training
- Or
- Incorrect activity ordered
- Transcription error from spreadsheet to ordered activity
- Vendor error
- Or
- Incorrect activity shipped
- Failure to check order verification
- Or
- Incorrect activity received
- Or
- Incorrect activity taken to procedure

Or
Which of the following is true about common cause?

1. It is a cause for a potential failure that is common in everyday life. (20%)
2. It is a left-wing political action group. (20%)
3. It is a cause that produces a common potential failure. (20%)
4. It is a cause that is not very interesting or difficult to fix. (20%)
5. It is a cause that can produce potential failures along more than one pathway. (20%)
Which of the following is true about common cause?

1. It is a cause for a potential failure that is common in everyday life. 20%
2. It is a left-wing political action group. 20%
3. It is a cause that produces a common potential failure. 20%
4. It is a cause that is not very interesting or difficult to fix. 20%
5. It is a cause that can produce potential failures along more than one pathway. 20%
Reference

- Slides 8 and 9.
The best way to avoid potential errors at some step is to redesign the procedure so that error is not possible (i.e., what leads to it no longer exists).
The best way to avoid potential errors at some step is to redesign the procedure so that error is not possible.

Re-evaluate after a redesign because new possible errors may have been produced.
Possible Interventions

• First correct any environmental problems.
• Fix technical problems.
• Both usually are relatively inexpensive but effective operations that managers understand.
Possible Interventions 2

Then consider the *key core components* identified by AAPM TG 100:

- Standardized procedures
- Adequate staff, physical and IT resources
- Adequate training of staff
- Maintenance of hardware and software resources
- Clear lines of communication among staff
Possible Interventions 3

- As you start with the highly ranked potential failures, it is useful to consider all the given branch of the fault tree at once.
- It is also efficient to work through all the branch of the process tree at once.
- Work down through the rankings until you get to potential failures that you don’t care if they happen given your resources.
Commissioning

- Identify those potential failures that can be eliminated through commissioning.
- This is likely to be many.
- Commissioning is when the limits of reliability for equipment operation are found and all data needed for its use gathered.
- BUT, commissioning is for more than equipment.
Commissioning is also for procedures.

- Walk though the procedure with all principles.
- Make sure all equipment and instruments are where they need to be and operators know how they work.
- Establish the lines of communication:
 - Who passes what information to whom and how.
 - Everyone understands what everyone else does when.
- Start slowly and work up to clinical speed.
Commissioning

Don’t try to read!

Taken from TG 100
After Checking Resources

- Identify those potential failures that can be eliminated through commissioning.
- This is likely to be many.
- For the remaining, consider QC and QA.
Quality Management

Quality Management – *All* activities designed to achieve the desired quality in treatments.

Quality Control – Activities that force specific quality on a process.

Quality Assurance – Activities that demonstrate the level of quality of a process.
Organizational Difference between QC and QA
After Checking Resources

- Identify those potential failures that can be eliminated through commissioning.
- This is likely to be many.
- For the remaining, consider QC and QA.
- All fault tree branches eventually need to be covered somewhere before the far left box.
- Let’s consider some examples.
Which of the following is true about commissioning?

1. It is the preparations for a procedure. [20%]
2. It is only for equipment. [20%]
3. It is where the operation of equipment is compared with the order specifications. [20%]
4. It doesn’t need to be done if there is only one person who performs a procedure. [20%]
5. It is when the values for the FMEA are determined.
Which of the following is true about commissioning?

20% 1. It is the preparations for a procedure.

20% 2. It is only for equipment.

20% 3. It is where the operation of equipment is compared with the order specifications.

20% 4. It doesn’t need to be done if there is only one person who performs a procedure.

20% 5. It is when the values for the FMEA are determined.
Reference

- Slide 19.
One Example

Patient Misidentified

Or

Human error: Omission - Time out not performed

Training - patient identified incorrectly
One Example

Systemic corrections
Quality assurance
Quality control
Managerial changes
Procedural changes

Patient misidentified

Human error: Omission – Time-out not performed
Training – patient identified incorrectly

QC failure: Time-out form
Another Example

MP fails to hand correct needle to RO

Or

Human failure: Inattention/Poor performance

Confusion between packages

Poor demarcation of needles

MP drops needle

Or

Poor room layout

Human failure: MP slips
Another Example

MP fails to hand the correct needle to RO

Human Failure: Inattention/Poor performance

Failure of call and response

Confusion between packages

Poor demarcation of needles

MP drops needle

Poor room layout

Human failure: MP slips
Another Example

RO fails to align images along the range

Or

Training Failure

Human Failure: Inattention/Poor performance

US images inadequate
Another Example

RO fails to align images along the range

Or

Training failure

Human Failure: Inattention/Poor performance

US images inadequate

US QA failure
Some Thoughts on Human Errors

- You can never eliminate human error except by eliminating the humans.
- You need to design the system to be resilient to human error. There are ways to address some factors that increase the likelihood of human error.
- Protect it downstream with interventions.
- Best if these are automatic.
No Preventing Human Error

Add some QC down stream
A Note on Equipment Failure

- Equipment failure is not entirely under your control because sometimes equipment just fails. You cannot eliminate that possibility.

- You can do things to influence equipment failure:
 - Thorough commissioning
 - PMI, a resource and procedural issue
 - QA
Ranking of QM Tools

The strength of actions varies:

1. Forcing functions and constraints
2. Automation and computerization
3. Protocols and standard order forms
4. Independent check systems and other redundancies
5. Rules and policies
6. Education and Information

From the Institute for Safe Medical Practices toolbox
(ISMP, 1999)
Which of the following is the weakest intervention?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Policies because they may not be followed.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Automation because it might not work.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Forcing functions because an action may not be anticipated.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Education because it can be forgotten.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Checklist because it might be omitted.</td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>
Which of the following is the weakest intervention?

1. Policies because they may not be followed.
2. Automation because it might not work.
3. Forcing functions because an action may not be anticipated.
4. Education because it can be forgotten.
5. Checklist because it might be omitted.
Reference

- Slide 37.
Summary

- To prevent the effect of a failure requires either preventing the progenitor cause OR interrupting the propagation.
- First, look at redesign and reassess.
- Ensure resources, environment and key core components.
- Commission well.
- Organize the QM steps by QC and QA.
- Often it is most efficient and effective to consider complete branches of the fault tree and process tree at the same time.