MR Guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue

Pejman Ghanouni, MD, PhD
Assistant Professor
Department of Radiology
Stanford University School of Medicine
ghanouni@stanford.edu

Physics in action

Focused ultrasound physics
What is focused ultrasound?

- large area ultrasound transducer array outside the body
- focused geometrically or electronically
- amplification
- high intensities deep within the body, lower intensities in intervening tissues

Why now?

Ultrasound was a therapeutic tool before it became a diagnostic modality
- physical therapy since 1930s
- focused US used clinically since 1950s
- rapid growth in past 10-15 years

Advantages of MR guidance

- Target identification
Advantages of MR guidance

Treatment verification during the procedure

Advantages of MR guidance

Post-procedure target validation

before MRgFUS

after MRgFUS

Pain from bone metastases is often debilitating

- 76% of patients with bone metastases report moderate to severe bone pain at some point in their disease
- Pain from bone metastases often becomes refractory to systemic therapies
- External beam radiation therapy (EBRT) is the current standard for refractory bone pain
- Up to 35% of patients do not experience any pain relief with EBRT and, in those that respond, pain recurs in up to 27%
- Patients not treated for bone metastases are at increased risk for skeletal complications which impact pain and quality of life (QoL)

Sources: Yau et al., 2006; Hartsell et al, 2005.
Bone metastases are common in many cancers

% Patients Developing Bone Mets

Currently Available Palliation for Bone Metastases

Systemic Therapy
- Analgesics
- Bisphosphonates
- Denosumab
- Chemotherapy
- Radiotopes

Local Therapy
- Radiotherapy
- MRgFUS
- Intervential
- Surgery

Sources: Skeletal Care Academy; Coleman et al., 2006

>50% patients who die of cancer have bone mets

Currently Available Palliation for Bone Metastases

Currently Available Palliation for Bone Metastases

<table>
<thead>
<tr>
<th>Systemic Therapy</th>
<th>Local Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>MRgFUS</td>
</tr>
<tr>
<td>Denosumab</td>
<td>Intervential</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>Surgery</td>
</tr>
<tr>
<td>Radiotopes</td>
<td></td>
</tr>
</tbody>
</table>

Focal Therapy in Soft Tissue

Ablates only at the focal point

Surface Therapy in Bone

Heats larger area of bone cortex

Focused ultrasound bone vs soft tissue treatment

Treatment dictated by the properties of the target tissue

Focused ultrasound bone vs soft tissue treatment

Focal Therapy in Soft Tissue

Ablates only at the focal point

Surface Therapy in Bone

Heats larger area of bone cortex

Mechanism of MRgFUS bone treatment

Thermal ablation of nerves within bone provides pain palliation

Mechanism of MRgFUS bone treatment

Thermal ablation of nerves within bone provides pain palliation
MR guided focused ultrasound treatment

1. Patient Table
 - Docks to 1.5T and 3T MR scanners
 - Phased array transducer

2. Operator Console
 - Controls all treatment planning and operation
 - Sits next to MR in console room

3. Equipment Cabinet

Patient table: patient cradle

- Ultrasound transducer
- Motion system
Post-treatment verification

Prospective clinical experience

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>FU (m)</th>
<th>PR</th>
<th>CR</th>
<th>SD</th>
<th>PD</th>
<th>Pain</th>
<th>Sig AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catane</td>
<td>13</td>
<td>2</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>65%</td>
<td>0</td>
</tr>
<tr>
<td>Gianfelice</td>
<td>11</td>
<td>3</td>
<td>54</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>92%</td>
<td>0</td>
</tr>
<tr>
<td>Liberman</td>
<td>31</td>
<td>4</td>
<td>36</td>
<td>36</td>
<td>24</td>
<td>4</td>
<td>69%</td>
<td>0</td>
</tr>
<tr>
<td>Napoli</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>2</td>
<td>84%</td>
<td>0</td>
</tr>
</tbody>
</table>

Pivotal study of MRgFUS for bone metastases

- Primary Efficacy Endpoints

1. At least 50% of patients on treatment arm will achieve at least 2 point improvement in pain at 3 months without increase in medication.

2. The response rate in the treated group will be significantly greater than the response rate in the sham group.
Pivotal study of MRgFUS for bone metastases

• **Secondary Efficacy Endpoints**
 1. Numerical Rating Scale (NRS) score (0 – 10)
 2. Medication use quantified by 24 hour morphine equivalents
 3. Quality of life (QoL): BPI-QoL

• **Safety Endpoints**
 Adverse Events (AE’s) & Serious Adverse Events (SAE’s)

Inclusion and exclusion criteria

• ≥ 18 years of age with life expectancy ≥ 3 months
• Not candidates for RT
• Tumors were visible on MRI and device accessible
• Distinguishable pain at site of targeted tumor
• Tumors were ≥ 1 cm from skin or major nerves
• Low risk of fracture
• Excluded
 • significant comorbidities
 • if site needed surgical stabilization

Clinical case

• 78 year old male
• Metastatic melanoma
• Painful osteolytic lesion in right ischium
• Treated with Cyberknife, with persistent pain
Clinical case

- 78 year old male with painful metastatic melanoma lesion in right ischium
- MRgFUS procedure required 19 sonications, up to 1900 J
- <60 min sonication time

Magnetic Resonance–Guided Focused Ultrasound for Patients With Painful Bone Metastases: Phase III Trial Results

Manuscript received November 30 2013; revised February 26, 2014; accepted March 3, 2014.

Correspondence to: Moe D. Hurwitz, MD, 111 S 11th St, Aristotle Center, 6th Fl R-1, Philadelphia, PA 19107; e-mail: mohurwitz@jefferson.edu.
Responses by study arm

NRS decrease durable to 3 months

Opioid use in responders at 3 months
Reduction in interference of pain with life

![Graph showing reduction in interference of pain with life](image)

- *p < 0.001*

Patient characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MRgFUS N=115 (76%)</th>
<th>Placebo N=37 (24%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cancer Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>34 (30%)</td>
<td>19 (54%)</td>
</tr>
<tr>
<td>Prostate</td>
<td>15 (13%)</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>Kidney</td>
<td>9 (8%)</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>Lung</td>
<td>17 (15%)</td>
<td>4 (11%)</td>
</tr>
<tr>
<td>Other</td>
<td>35 (31%)</td>
<td>8 (23%)</td>
</tr>
<tr>
<td>Target Lesion Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoblastic</td>
<td>25 (22%)</td>
<td>6 (17%)</td>
</tr>
<tr>
<td>Osteolytic</td>
<td>59 (53%)</td>
<td>21 (60%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>27 (24%)</td>
<td>8 (23%)</td>
</tr>
<tr>
<td>Target Lesion Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>70 (63%)</td>
<td>19 (54%)</td>
</tr>
<tr>
<td>Sacrum/Coccyx</td>
<td>12 (11%)</td>
<td>6 (17%)</td>
</tr>
<tr>
<td>Rib/Sternum</td>
<td>16 (14%)</td>
<td>6 (17%)</td>
</tr>
<tr>
<td>Extremities</td>
<td>7 (6%)</td>
<td>3 (9%)</td>
</tr>
<tr>
<td>Scapula</td>
<td>7 (6%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Prior Radiation Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[n (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior RT to lesion*</td>
<td>49 (44%)</td>
<td>9 (26%)</td>
</tr>
<tr>
<td>Prior RT elsewhere</td>
<td>14 (13%)</td>
<td>2 (6%)</td>
</tr>
<tr>
<td>No Prior RT</td>
<td>46 (41%)</td>
<td>24 (69%)</td>
</tr>
<tr>
<td>Missing</td>
<td>3 (3%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>
Safety

47 AEs:
• 36 (32.1%) sonication pain
• 9 (8%) positional pain
• 5 patients stopped early

4 SAEs:
• Gr 3 skin burn
• Neuropathy (hip flexor weakness)
• 2 fractures in osteolytic bone lesions (1 away from treated site)

How does this compare to radiation?

Comparison vs. first line treatment with radiation

<table>
<thead>
<tr>
<th>BM004 Study</th>
<th>RTDG 97-14*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGfUS (%)</td>
<td>86 Gy x 1 (%)</td>
</tr>
<tr>
<td>Complete Responders</td>
<td>23</td>
</tr>
<tr>
<td>Partial Responders</td>
<td>41</td>
</tr>
<tr>
<td>Non-Responders</td>
<td>36</td>
</tr>
</tbody>
</table>

Key to treatment success

• “Only” 65% had treatment relief
• Hypothesized that some of the patients that didn’t respond in the treatment group may not have had a technically successful treatment.
• Reviewed imaging for all the patients treated in the trial, looking for any imaging features that predict pain relief
 • Tumor location and size
 • Intact cortical bone
 • Lytic or sclerotic tumor
 • T2WI
 • Enhancement
 • Subcortical devascularization
• Presence correlates with pain relief
Key to treatment success

- 87 of 104 patients had the black band (84% technical success)
- 78 of 87 patients with successful treatment had pain relief (90%)
- 71 had durable relief (82%)
- 12 of 17 patients without successful treatment had no pain relief (70%)
- OR of treatment resulting in pain relief: 7.2
- OR of successful treatment resulting in pain relief: 14.4

Key to treatment success

- Examined treatment parameters for correlation with technical success
 - Number of sonications
 - Sonication energy
 - Total energy delivered per treatment
 - Energy density on bone
- Black band correlates with %ROT covered during treatment, which correlates with response
 - CR – 93% coverage
 - PR – 80%
 - PR, but not durable – 62%
 - No response – 66%
 - No black band – 66%

Tumor control – not necessary, but possible
Tumor control

Treatment criteria

- Tumors must be in the following locations:
 - pelvis and posterior lower lumbar spine
 - ribs and sternum
 - shoulders, arms, and legs
- Tumors must be visible on MRI
- Tumors must be accessible to the focused ultrasound beam
 - for example, tumors blocked by extensive scarring or bowel cannot be treated.
- The targeted bone must be at least 1 cm from the skin surface.
Contraindications to treatment

Not a good candidate for the treatment if:

• Cannot safely undergo MR imaging
• Have a bone that is fragile and may break or needs surgery to be stabilized, or has already been stabilized with surgical implants
• Have extensive skin scarring in the areas that would be treated.

Expanding applications

Benign bone tumors - Osteoid osteoma
Risks of treatment

- Most common risk is pain or discomfort during treatment due to delivery of sonication energy
 - Relieved through anesthesia and intravenous medications
 - Dissipates shortly after each sonication ends
- Positional pain
- Nausea or vomiting as a side effect of the narcotic medications
- Blood in urine or urinary tract infection due to urinary catheter
- Low grade fever for a few days as a reaction to the ablated tissue
- Low risk of:
 - Skin burns, nerve injury, or bone fracture
 - Deep venous thrombosis because of the prolonged stationary position in the MR scanner

Benefits of treatment

- Non-invasive
- Single outpatient procedure
- Rapid reduction in pain
- Successful in patients that have not responded to radiation
- Favorable risk profile

Conclusions

- Relief from painful bone metastases is a significant clinical need
- MRgFUS intervention
 - Targeted
 - Effective
 - 80-90% of those with successful treatment had pain relief
 - Minimally invasive
 - Nontoxic
- MR image guidance and intervention
 - MR thermometry provides safety and treatment verification
- Future directions
 - Tumor control
Clinical Background for Soft Tissue Tumors of the Extremities

- Heterogeneous group of tumors arising from connective tissues
- Natural history
 - Benign
 - Benign, but locally aggressive
 - Malignant

Treatment of soft tissue tumors

- Desmoid tumor:
 - Observation
 - Useful to differentiate aggressive vs slow-growing tumor
 - Surgery and/or radiation therapy
 - Medical approaches include: anti-estrogens, NSAIDs, chemotherapy, targeted therapies
 - Cryoablation
- Vascular malformation
 - Surgical resection
 - Image-guided percutaneous sclerotherapy
 - Image-guided ablation – radiofrequency, laser or cryoablation
- Soft tissue sarcoma:
 - Surgery alone or in combination with radiation or chemotherapy
 - Potentially curative
 - Significant adverse events and impact on quality of life

Treatment of desmoid tumors

- Surgery
 - Infiltrative tumor, so large resection needed to achieve negative margins
- Radiation
 - Reduce the rate of local recurrence
 - Treat unresectable tumors
 - Palliate pain
- Conservative approach now aims to preserve function
 - Recurrence depends not only on positive margin as well as behavior of tumor
Treatment of desmoid tumors

Local recurrence
Treatment of desmoid tumors

- **Surgery**
 - Infiltrative tumor, so large resection needed to achieve negative margins
- **Radiation used to**
 - Reduce the rate of local recurrence
 - Treat unresectable tumors
 - Palliate pain
- **Conservative approach** now aims to preserve function
 - Recurrence depends not only on positive margin but also on behavior of tumor

Clinical background for soft tissue tumors

- **Treatment**
 - Surgical resection
 - Radiation therapy
 - Chemotherapy
 - Novel systemic treatments (targeted therapies)
- **Side effects**
 - Surgical morbidity
 - Radiation burns, secondary malignancy, fibrosis, chronic edema
 - Chemotherapy toxicity
- **Clinical need**
 - Decrease morbidity associated with treating soft tissue tumors
 - Primary, recurrent, or palliative treatment
Advantages of MR guidance

Targeting and safety

Example of desmoid tumor treatment
Other treatment sites

Knee and hand

Total tumor volume (mL)

Time relative to first treatment (months)

Viable tumor volume (mL)

Time relative to first treatment (months)
Treatment summary

- Four sites, 15 patients, 26 treatments
- Average follow-up: 17.5 months (4 – 38 months)
- Patient age: 28 years (7 – 66 years)
- Anesthesia: GA, regional, regional + GA, local + conscious sedation
- Sonication per treatment: 90 ± 47 (17 – 235)
- Treatment time: 3.5 hours (0.8 – 8 hours)
- Spot energies: 1428J (419 – 2867J)
- Spot temperature: 58 ± 5°C
- Median total tumor volume: 212 mL (4 – 1010 mL)
- Average NPVR: 69% (95% CI: 61-77%)

Pain relief:
- Max: 7.5 ± 1.9 → 2.7 ± 2.6 (p = 0.0002)
- Avg: 6 ± 2.3 → 1.3 ± 2 (p < 0.003)

Adverse events

- 1st or 2nd degree skin burn
 - 8 of 26 treatments
- Non-target ablation
 - 3 of 26 treatments
- Nerve injury
 - 3 of 26 treatments

Clinical Background for Vascular Malformations

- Heterogeneous group of tumors arising all over the body
 - Most common cause of pediatric soft tissue tumors
- Vascular malformations are classified based on flow dynamics
 - High flow – AVM or AVF
 - Low flow – venous, lymphatic, capillary, or mixed
- Grow proportionally with the patient
 - Exacerbated by hormonal changes during puberty or pregnancy, or by trauma or infection
Soft Tissue Vascular Malformations

Venous malformations

- Most common vascular malformation
- Location
 - Head and neck (40%)
 - Trunk (20%)
 - Extremities (40%)
- Composition
 - Large dysplastic thin walled vascular channels with sparse smooth muscle and abnormal stroma, and thrombi and phleboliths
 - Connect with adjacent physiologic veins
 - Invade across adjacent tissues
- Presentation
 - Congenital, but symptomatic in late childhood or early adulthood
 - Symptoms vary with depth of lesion
 - Pain
 - Impaired mobility
 - Skeletal deformity

Soft Tissue Vascular Malformations

Standard treatment for slow flow lesions

- Surgical resection – 90% success
- Image-guided percutaneous sclerotherapy – 65-90% success
- Image-guided percutaneous radiofrequency, laser or cryoablation

Treatment summary

<table>
<thead>
<tr>
<th>Patient age</th>
<th>44 years</th>
<th>18 – 66 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anesthesia</td>
<td>General a/o regional</td>
<td></td>
</tr>
<tr>
<td>Follow up</td>
<td>5.5 months</td>
<td>3 – 12 months</td>
</tr>
<tr>
<td>Sonication number</td>
<td>53</td>
<td>14 – 92</td>
</tr>
<tr>
<td>Treatment time</td>
<td>2.5 hours</td>
<td>1 – 4 hours</td>
</tr>
<tr>
<td>Sonication energies</td>
<td>1700 J</td>
<td>650 – 2500 J</td>
</tr>
<tr>
<td>Power</td>
<td>187 W</td>
<td>97 – 253 W</td>
</tr>
<tr>
<td>Sonication duration</td>
<td>9.7 s</td>
<td>7.6 – 13.2 s</td>
</tr>
<tr>
<td>Spot temperature</td>
<td>50°C (avg)</td>
<td>56°C (max)</td>
</tr>
<tr>
<td>Total tumor volume</td>
<td>17.6 mL</td>
<td>0.4 – 61 mL</td>
</tr>
<tr>
<td>Maximal tumor diameter</td>
<td>5 cm</td>
<td>1.4 – 11.4 cm</td>
</tr>
<tr>
<td>NPV</td>
<td>21.7 mL</td>
<td></td>
</tr>
<tr>
<td>NPVR</td>
<td>6.1</td>
<td>1.05 – 13</td>
</tr>
</tbody>
</table>
Adverse events

- No skin burn or nerve injury
- Non-target ablation
 - Fascia
 - Bone
 - Fat

Soft tissue sarcoma treatment
Soft tissue sarcoma treatment

Coronal Post-Contrast MRI

Sagittal Post-Contrast MRI

Pre-MRgHIFU

Post-MRgHIFU

Soft tissue sarcoma treatment

Pre-MRgHIFU

Post-MRgHIFU

Soft tissue sarcoma treatment

Coronal

Axial

Pre-MRgHIFU

Post-MRgHIFU
Sarcoma treatment summary

- 5 patients
- Patient age: 54 years (28–70 years)
- Anesthesia: regional
- Sonication per treatment: 57 (34–81)
- Treatment time: 2 hours (1–3 hours)
- Spot energies: 1506 J (679–2985 J)
- Spot temperature: 56 ± 4°C (avg), 67 ± 10°C (max)
- Median total tumor volume: 104 mL (31–205 mL)
- Median NPV: 35 mL (7–101 mL)
- Average NPVR, total volume: 47% (14–97%)
- Average NPVR, planned volume: 818% (0.72–36.1%)

Challenges

- Positioning
- Coupling to transducer
- Anesthesia
- Higher frequency transducer
- MRI artifacts
- Side effects from far-field
- Cooling mechanism
- More accurate thermometry
 - Volumetric, with cumulative dose
 - Temperature in fat
- More conformal treatment planning

Conclusions

- Histologic feedback from sarcoma treatments will improve our ability to plan treatments, perhaps allowing us to treat recurrences or to avoid surgery
- Preliminary experience suggests that MRgFUS can be used to achieve durable local control of desmoid tumors
- Early experience suggests that MRgFUS can be used to achieve durable local control of small slow-flow vascular malformations
- So far, good safety profile, but need larger number of patients
Conclusions