Advanced approaches for MR guided HIFU and MR guided Radiotherapy in the abdomen

Cornel Zachiu, Baudouin Denis de Senneville, Sjoerd Crijns, Mario Ries, Bas Raaymakers, Chrit Moonen

Imaging Division, University Medical Center Utrecht, The Netherlands

External beam therapies

- **External Beam Radiotherapy (EBRT)**
- **High Intensity Focused Ultrasound (HIFU)**

MRI guidance of external beam therapies

- Target and OAR definition (HIFU and RT)
- Motion correction intra- and interprocedure (HIFU and RT)
- Temperature mapping during the procedure (HIFU)
- Evaluation of therapeutic efficacy (HIFU and RT)
Thermal ablation on abdominal organs: Work-flow and motion

1-5 min
Infrequent Spontaneous motion

1-3 hours
Preparation (anatomical imaging)
Therapy guidance during energy delivery
Therapy guidance between energy delivery
Validation of the therapeutic endpoint

For HIFU typically:
• Perfusion imaging for NPV validation
• T2-weighted imaging for edema detection

For HIFU typically:
• Positioning
• T1/T2-weighted planning images

For HIFU typically:
• Real-time motion compensation (gating or tracking)
• Real-time thermometry
• Measurement of slow motion for dose realignment
• Observation of near field cool-down

For HIFU typically:
• PRF-Thermometry
• Motion tracking (beam steering, gating)
• T2-Thermometry

Physiological motion

Peristaltic motion

Cervix
Prostate
Pancreas
Liver
Kidney

Physiological motion: Peristalsis

Prostate

From Ghilain et al., 2005
Physiological motion

Motion as seen by MRI 8 scans in 35 minutes

Prostate

Peristaltic motion

Table 1: Prostate parameters and imaging results for prostate with normal motion

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oral</th>
<th>Left</th>
<th>Right</th>
<th>Atrial</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal strength</td>
<td>56</td>
<td>48</td>
<td>43</td>
<td>47</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>Signal intensity</td>
<td>88</td>
<td>92</td>
<td>95</td>
<td>93</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Signal quality</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>86</td>
<td>88</td>
<td>88</td>
</tr>
</tbody>
</table>

From Chan et al., 2008
Int J Radiat Oncol Biol Phys

Thermal ablation on abdominal organs: Work-flow and motion

Preparation (anatomical imaging)
Therapy guidance during energy delivery
Therapy guidance between energy delivery
Validation of the therapeutic endpoint

1-5 min

Respiratory motion

1-3 hours

Peristaltic motion
« Slow » 3D Motion correction for abdominal HIFU

- 3D anchor images are periodically obtained and compared to a reference.

- Preparation (anatomical imaging)
- Therapy guidance during energy delivery
- Therapy guidance between energy delivery
- Validation of the therapeutic endpoint

1-3 hours
A study on 10 healthy volunteers – validation of the tracking method + proof that the targeted organs move due to slow physiological drifts beyond the acceptable therapeutic margins

An in vivo experiment on a porcine liver – validation of the proposed method during a real HIFU therapy
Propagate the initial treatment plan down the flow of the motion

In vivo porcine experiment on the liver for validation

Slow 3D Motion correction for abdominal HIFU

- Project and accumulate the currently delivered thermal dose on the initial treatment plan upstream the flow of the motion.

In vivo porcine experiment on the liver for validation

Fast 2D motion correction

- 1-3 hours
- Preparation (anatomical imaging)
- Therapy guidance during energy delivery
- Therapy guidance between energy delivery
- Validation of the therapeutic endpoint

Fast 2D motion correction

- Real-time co-registration
Fast 2D motion correction

- MRI allows detailed intra- and inter-procedure motion tracking of the order of 1 mm
- A framework has been developed for 3D correction of (slow) peristaltic motion and 2D correction for respiratory motion
- Funding was provided by the project OnTrack (STW, the Netherlands, in collaboration with Philips Healthcare)

Concluding remarks

- MRI allows detailed intra- and inter-procedure motion tracking of the order of 1 mm
- A framework has been developed for 3D correction of (slow) peristaltic motion and 2D correction for respiratory motion
- Funding was provided by the project OnTrack (STW, the Netherlands, in collaboration with Philips Healthcare)