The Role of Pulsed High Intensity Focused Ultrasound (pHIFU) in Cancer Therapy

Fox Chase Cancer Center

Lili Chen, PhD
Department of Radiation Oncology

Background of the Studies

- Exablate 2000 HIFU system installed in the Dept of Rad Onc at FCCC in 2006
- Orthotopic prostate tumor model was developed in our laboratory

Prostate Tumor in Mouse

T2-weighted MRI (1.5T)
Resolution: 0.23 mm
Motivation

- **Hypothesis**
 pHIFU exposures enhances drug delivery and increases the efficacy of gene/chemotherapy in inhibiting prostate cancer growth in vivo, particularly when combined with AD (androgen deprivation) or RT.

- **Purpose of the study**
 To verify the concept of enhancing drug uptake with MR guided pHIFU.

Motivation of Targeted Drug Delivery Studies

- pHIFU - short waves
 - Vascular or cell membrane permeability
 - Drug concentration in target
 - MR used to place ultrasonic beam in the target and monitoring the effect of treatment in real time
 - Enhancement of gene/chemotherapy in prostate cancer + Androgen deprivation + RT
 - Prostate cure rate

HIFU Research Team

Charlie Ma, Lili Chen, Alan Pollack, Duska Cretdovic, Zhaomei Mu, Xiaoming Chen, Bin Wang, Roohi Gupta
Pilot Study (1) Doxorubicin

Parameters: 1 MHz; 4 W of acoustic power and 5 Hz frequency with 50% duty cycle (0.1s power on, 0.1s power off) for 1 minute /per sonication.

Pilot study (2) Cellular uptake of AS-MDM2 with MRgHIFU in vivo

1) MDM2 is an oncogene and overexpressed in 30-40% of prostate cancer. Antisense MDM2 oligonucleotide (AS-MDM2) inhibits MDM2 expression, and enhances the effects of radiation and chemotherapy on prostate cancer.

2) The purpose of this study is to investigate the feasibility of increasing the cellular uptake of AS-MDM2 using MR guided Pulsused High Intensity Focused Ultrasound (pHIFU).
Percentage of cells showing AS-MDM2, p53 and P21 expression after IHC staining

Intratumoral uptake of $[^3]$H-docetaxel in vivo using MRgHIFU

- The purpose of the study
 - if the delivery of $[^3]$H-docetaxel is enhanced in the treated prostate tumor then the insignificant results from the gene therapy experiments would be due to the ineffectiveness of the gene drug

- The rational of selection of Docetaxel
 1. Routinely used in clinic
 2. A potent radio-sensitizer, used for quantitative measurement

Study Design

- LNCaP 10^6, were grown orthotopically in the prostates of mice
- Use the same treatment pHIFU parameters as for gene therapy
- $[^3]$H-docetaxel (1.25 μci/25 g) received by tail vein immediately after pHIFU.
- Animals euthanized 30 minutes post treatment and the $[^3]$H-docetaxel were measured quantitatively (cmp counts) using a scintillation detector
Animal Setup and Focal Spot Calibration

Treatment Planning in Real Time

Real Time Monitoring
Results

• No skin damage
• No death of animals during or after the pHIFU treatment

Immediately after pHIFU

Comparison of 3H-docetaxel in Tumor with and without pHIFU

P=0.037

Quantitative study of Enhancement of Doxorubicin Delivery in Prostate Cancer in vivo with MRgHIFU

• “Optimal” treatment parameters
 – 1 MHz, 25 W acoustic power, and 1 Hz pulse rate with a 10% duty cycle for 60 s for each spot.

• Temperature elevations
 <$5 ^\circ$C observed during the treatment,

Relationship of Acoustic Power, Sonication Durations and Temperature Elevation

Results
Comparison of Dox with and without pHIFU

Histological Analysis
"implosion cysts"
Thermal damage
Chen et al. 1993. UMB
Dox Distribution in Prostate Tumor after pHIFU

control Dox pHIFU + Dox
X 20

Evaluation of the Efficacy of the Enhancement of Docetaxel by pHIFU for Prostate Treatment

1) Docetaxel + pHIFU in tumor growth control
2) Docetaxel + pHIFU + RT in tumor growth control
3) pHIFU + RT using “optimal” pHIFU parameters and tumor sizes
4) pHIFU alone for tumor growth control

Study (1) - Study Design

• Tumor volume: 45 ± 9 mm³ measured on MRI
• 4 Groups (n=5)
 (1) pHIFU alone
 (2) docetaxel + pHIFU
 (3) docetaxel alone
 (4) Control
Study (1) - Study design (continued)

Groups 1 and 2 = pHIFU/week x 2
Groups 2 and 3 = docetaxel by i.v. 10 mg/ kg/week x 2
Group 2 i.v injection immediately after pHIFU

*pHIFU parameters: 1MHz; 5W, 50% duty cycle (0.1 s power on and 0.1 s power off) for 60 s per sonication

*Tumor volume measured on MR (1.5T) weekly for 4 weeks

Results

Study (2)

• Reduced docetaxel dose from 10 mg/kg to 5 mg/kg for one injection
• pHIFU treatment also for one time TX with the same parameters
Study (3)

Purpose: Evaluation of the Therapeutic Effects of pHIFU + RT

1. Using “optimal” pHIFU treatment parameters
2. RT dose: 2 Gy (Siemens Artiste linear accelerator)

Results

Tumor Growth Control

pHIFU parameters: 1MHz; 5W for 60 s with 50% duty cycle (0.1 s power on and 0.1 s power off) per sonication
Study (4) Therapeutic Effect of pHIFU Alone

Therapeutic Effect of pHIFU on Tumor Growth

ImmuoChemical Staining-Caspase to detect apoptotic cells 24 h after treatment

The apoptosis induced by pHIFU is comparable to that by 2 Gy irradiation.
Immunochemical Staining—γH2AX and Chk2 indicating DNA damage

48 h after treatment, the two biomarkers are increased in the HIFU treated mice compared with the control group.

Conclusions/discussions

▸ Animal studies demonstrated the effectiveness of enhancement of chemotherapy by pHIFU in combination with RT for prostate tumor control *in vivo*

▸ The therapeutic effect of pHIFU alone may be clinically significant.

Conclusions/discussions

▸ There appeared to be an earlier treatment response to pHIFU than to RT, indicating different cell killing mechanisms between the two modalities.

▸ There was a tendency toward accelerated tumor growth in pHIFU treated tumors compared to the control mice.

▸ The therapeutic effect of pHIFU may be a combined result from mitotic, apoptotic, and necrotic cell death due to biophysical and biochemical reactions mediated by pHIFU with different components of the tumor cell including DNA, cell membrane, mitochondria, etc.
Future Work

Further experiments are warranted to understand the cell killing mechanisms of pHIFU and to derive optimal ultrasound parameters and fractionation schemes to maximize the therapeutic effect of pHIFU.

Acknowledgements

- Focused Ultrasound Surgery Foundation
- DOD PC073127
- DOD BC102806
- NIH P30 CA 00-6927

- InSightec Inc for technical support
- Core research facilities at Fox Chase Cancer Center for technical support