hyperthermia: Translation to a clinical platfo applications	ultrasound		
Rajiv Chopra Radiology, UT Southwestern Medical Center, Dallas, T	×		
acknowledgements			
Funding Cancer Prevention and Research Initiative of Texas (CP National Institutes of Health (1R01CA199937) Evelyn and MR Hudson Foundation	RIT, R1308)		
Research Collaborators fed Laetsch (Pediatric Oncology), Robert Staruch (Phil Williams (Biochemistry)	ips Healthcare), Noelle		
Research Staff Chenchen Bing, Joris Nofiele, Cecil Futch, Debra Szcze Yonatan Chatzinoff, Imalka Munaweera	panski, Sumbul Shaikh,		
Academic Collaborators Kullervo Hynynen, Sunnybrook Research Institute			
ndustrial Partners Philips Healthcare — on-site personnel, hyperthermia į Celsion Inc — Thermodox®	olatform		
	UTSouthwestern Medical Center	 	

Adjust energy deposition params to maintain desired temperature

Feedback control algorithm

Benefits and challenges of mild hyperthermia

Clinical hyperthermia platform using MR-HIFU

Pushing MR thermometry to the limit!

Pushing MR thermometry to the limit!

- Monitoring of hyperthermia with MR thermometry is feasible
- Existing correction algorithms for ablation are NOT sufficient for HT
- Combination of prospective corrections (for image shift) and retrospective higher order polynomial drift corrections are necessary to achieve accuracy within 1°C
- Pre-heating the magnet with a 5-10 minute acquisition improves performance of corrections!

Application: Hyperthermia mediated drug delivery

Thermosensitive liposomes containing anticancer drugs (i.e. Thermodox) Relatively stable for 1-2 hours in bloodstream,

Rapidly release drug when passing through tissue heated above 41°C,

Prolonged heating allows continuous release for enhanced cellular uptake.

UTSouthwestern

Enhanced drug deposition in heated tissue

Staruch et al 2010, 2012

VX2 tumor growth after Thermodox + HT	
99 mm N=6	
Planning 1 week 2 weeks 3 weeks	
1.67 mg/kg of Thermodox (TLD), administered only once!	
Staruch et al, International Journal of Hyperthermia 2015	
Applying localized drug delivery to pediatric cancer	
Doxorubicin is used for the treatment of vast majority of 30 pfor trend <0.001 3759	
pediatric solid tumors • Often used prior to surgery or radiation for local control	
40% of childhood cancer survivors have severe or life-	
Cardiac toxicity is one of the most common and debilitating	
of these side effects 0 1-100 101-150 151-200 201-250 251-300 ≥301 Cumulative anthracycline exposure (mg/m²)	
Blanco et al, J Clin Oncology 2015	
UTSouthwestern Medical Center	

Preclinical studies on HT-mediated drug delivery

Does longer $\underline{\text{heating time}}$ increase DOX in tumor more than heart?

Does lower <u>injected dose</u> reduce DOX in heart more than tumor?

Can MR-HIFU <u>safely deliver</u> mild HT to soft tissue and bone?

Study Methods

Rabbit bilateral Vx2 tumor model

 $Thermodox @, 2.5 \ mg/kg \ infused over 5-6 \ minutes \ at \ start \ of \ heating \\ Exposure \ durations \ of 10, 20, 40 \ minutes \ of \ mild \ hyperthermia \ (42°C)$

All hyperthermia performed using the clinical platform

Animals sacrificed 30 minutes after end of heating and perfused to remove free drug

DOX measured using fluorometry

UTSouthwestern Medical Center

MR-HIFU hyperthermia in rabbit tumor

Temperature in 10 mm diameter region kept at 42°C for 40 minutes (1.2 MHz, 60W). Temperature-sensitive liposomal doxorubicin infused during first 6 minutes.

PHILIPS

UTSouthwestern Medical Center

Heating results: 10, 20, and 40 minutes

UTSouthwester

Influence of exposure time

- Therapeutic ratio of ~4 between heated and unheated tumor
- Therapeutic index ([htd.tum]/[hrt]) = 5.4 ± 3
 1 for free DOX
- Numbers in general agreement with prior studies (Staruch et al, Ranjan et al)
- Initial data does not indicate a benefit of extended heating tim
- benefit of extended heating time for localized drug release
 • Artifact of short sacrifice time?
- Saturation of tumor with rapid local release of drug?

5

Discussion

Localized DOX delivery in pediatric cancers could be an important measure to reduce long term cardiac toxicity

Acceptable heating quality for hyperthermia can be achieved using a clinical MR-HIFU hyperthermia system

Localized DOX delivery possible using clinical MR-HIFU system and Thermodox® in rabbit VX2 model

Stable hyperthermia achieved at 10, 20 and 40 minutes

 Initial analysis suggests longer heating durations do not improve the therapeutic index of DOX

72 Total Tumors, 60% in Treatable Location 5 year retrospective case review

UTSouthwestern Medical Center

,	Heated Tumor	Unheated Tumor	Heated Muscle	Unheated Muscle	Skin	Heart	Lung	Liver	Kidney	Spleen
ing	44.8	2.0	1.1	0.8	-	4.1	11.2	21.6	33.9	23.2
r	78.0	4.0	21.4	1.0	-	5.9	14.7	11.4	51.5	26.1
	71.2	3.8	19.7	0.5	1.1	6.0	22.9	18.7	41.4	18.1
	53.1	2.5	10.5	0.6	1.8	5.7	14.3	15.8	41.6	26.2
rsi	66.4	1.1	10.9	0.4	1.7	4.4	17.5	19.2	45.9	21.8
	129.1	6.6	27.9	0.9	0.7	7.4	16.4	12.4	56.0	25.3
	91.7	4.1	14.3	0.9	1.3	7.3	15.8	32.7	51.2	23.7
7	6.3 ± 27.9	3.4 ± 1.8	15.1 ± 8.8	0.7 ± 0.2	1.3 ± 0.4	5.8 ± 1.3	16.1 ± 3.6	18.8 ± 7.1	45.9 ± 7.6	23.5 ± 2.9
_	30 ± 9	-	0.7 ± 0.1	2.3 ± 1.3	7 ± 4	11 ± 2	19.8 ± 0.9	6.9 ± 0.2	27 ± 2	27 ± 3
	-	8.8 ± 1.4	-	2.0 ± 0.6	2.1 ± 0.5	7.1 ± 0.4	13.0 ± 0.3	7.8 ± 1.2	47 ± 14	24 ± 4