Acoustic Simulations in Transcranial MRgFUS: Prediction and Retrospective Analysis

URVI VYAS STANFORD UNIVERSITY

Outline

•Transcranial MRgFUS

- •Clinical treatments and patient specific thermal responses
- •Simulations in transcranial MRgFUS
- Treatment planning
 Patient selection
- Retrospective analysis

Transcranial MRgFUS

Non invasive selective tissue necrosis
Focused ultrasound waves
MR imaging for localization, guidance and feedback

Clinical tcMRgFUS Treatments

- System

 InSightec ExAblate Neuro 4000
 Hemispherical phased array
 1000 Elements, 680 kHz
 Electronic and mechanical steer

Clinical tcMRgFUS Treatments

- System

 Insightec ExAblate Neuro 4000
 Hemispherical phased array
 1000 Elements, 680 kHz
 Electronic and mechanical steering
- Treatment Protocol
 Patient head shaved
 Stereotactic frame placed
 Transducer positioned

Clinical tcMRgFUS Treatments

- System

 InSightec ExAblate Neuro 4000
 Hemispherical phased array
 1000 Elements, 680 kHz
 Electronic and mechanical steer
- Treatment Protocol

 - Transducer Positioned
 CT and MRI registered
 Phase aberration correction
 Low power sonication
 High power sonication
- Prior CT used for automatic s

Clinical tcMRgFUS Treatments

- System
 InSightec ExAblate Neuro 4000
 Hemispherical phased array
 1000 Elements, 680 kHz
 Electronic and mechanical stee
- Treatment Protocol
 - Patient head shaved
 Stereotactic frame placed
 Transducer Positioned
 CT and MRI registered

 - Low power sonication
 High power sonication

Aim: Simulations in tcMRgFUS to Improve Safety

The complex propagation of the acoustic waves in the skull, which includes the effects of reflection, refraction, and attenuation, in addition to phase aberration, can be understood using simulations.

- Patient Selection
- Treatment Planning
- Retrospective Analysis

Heterogeneity in Skulls: Individual

- · The presence of the skull causes
 - Phase Aberration
 - Absorption Scattering
 - Reflection

Heterogeneity in Skulls: Population

- The presence of the skull cause
 - Phase AberrationAbsorptionScattering

 - Reflection

Dataset

•Seventeen datasets from two institutions : Stanford University, Stanford, CA, USA and University of Virginia, Charlottesville, VA, USA

•Aim of treating essential tremor (n = 11) or parkinsonian tremor (n = 6).

•Each subject dataset included the screening CT images and the temperature images for every sonication of the tcMRgFUS treatment.

•The dataset also included information on the applied power, duration, and focal location used for each sonication.

Clinical Temperature Images

•Referenceless processing with frame centered on the hotspot.

•Thermal coefficient of -0.00909 ppm/°C, inner and outer dimensions of 32 mm and 64 mm respectively.

•First sonication where the temperature was greater than 2.5 times the standard deviation.

Clinical Temperature Images: Experimental SAR

Clinical Temperature Images: Experimental SAR

Clinical Temperature Images: Experimental SAR

Experimental SAR: Range

•The experimentally seen variation in a subject's thermal response varies significantly.

•Between the two limits the experimental efficiency in the dataset was well distributed.

0.020°C/W 0.0791°C/W

Simulations: Simulated Skull Efficiency

- Technique: Hybrid Angular Spectrum Simulations¹
- Transducer: InSightec Brain Transducer, 680 kHz
- Phase Corrections: All simulation phase corrected using Time Reversal
- Resolution: ~0.5x0.5x0.62 mm3
- Calculation Time: Each simulation takes 20 minutes
- No of Subjects: 17 Subject x-ray CT images and Treatment Temperatures

Voxel-by-Voxel Patient-Specific Tissue Acoustic Properties from CT Scan

Vyas, U. & Christensen, D. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1093-1100 (201

Simulation: Density Calculation

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm				
Simulation-Type	Scattering ²	Absorption (a)	Speed of Sound ¹ (c)	Density (p)
	(Np/cm/MHz)	(Np/cm/MHz)	(m/s)	(g/cm ³)
A. Simulated	Scattering based on voxel porosity ²	$\alpha = f + (1 - f) \times .04$	c=1460+.7096*HU	$\rho = f \times 3 + (1 - f)$
Efficiency		where f=bone		
		fraction		

Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L. & Fink, M., J. Acoust. Soc. Am. 113, 84 (2003).

Simulations: Calculation of Speed of Sound

Voxel-by-Voxel Patient-Specific Tissue Acoustic Properties from CT Scan

Speed of sound and density linear with Hounsfield Units

Voxel-by-Voxel Patient-Specific Tissue Acoustic Properties from CT Scan

Speed of sound and density linear with Hounsfield Units

Simulations: Calculation of Speed of Sound

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm					
Simulation-Type	Scattering ²	Absorption (a)	Speed of Sound ¹ (c)	Density (p)	
	(rep/cm/sunz)	(Np/cm/MHz)	(m/s)	(g/cm-)	
A Simulated Efficiency	Scattering based on voxel porosity2	$\alpha = f + (1 - f) \times .04$	c=1460+.7096*HU	$\rho = D < 3 + (1 - l)$	
		where f=bone			
		fraction			

Fry, F. J. & Barger, J. E. Acoustical properties of the human skull. J. Acoust. Soc. Am. 63, 1576–1590 (1978).

Simulations: Calculation of Scattering

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm					
Simulation-Type	Scattering ² (Np/cm/MHz)	Absorption (a) (Np/cm/MHz)	Speed of Sound ¹ (c) (m/s)	Density (p) (g/cm ³)	
A. Simulated Efficiency	Scattering based on voxel porosity ²	a=f+(1-l)×.04 where f=bone fraction	c=1460+.7096*HU	$\rho=D(3+(1-l))$	

Simulations: Calculation of Scattering

Simulations: Calculation of Scattering

Simulations: Calculation of Scattering

M. B. Tavakoli and J. A. Evans, Ultrasonics, vol. 30, no. 6, pp. 389–395, 199

Voxel-by-Voxel Patient-Specific Tissue Acoustic Properties from CT Scan

Voxel-by-Voxel Patient-Specific Tissue Acoustic Properties from CT Scan

Voxel-Properties by-Voxel Patient-Specific Tissue Acoustic from CT Scan

Simulations: Simulated Skull Efficiency

- Technique: Hybrid Angular Spectrum Simulation:
- (Element Locations of Stanford System).
 Phase Corrections: All simulation phase corrected
- using Time Reversal
- Calculation Time: Each simulation takes 20
 minutes (SDR takes minutes?)
- Power: Constant 500Watts for all subject
- No of Subjects: 17 Subject x-ray CT images and Treatment Temperatures
- SAR for each subject skull was calculated and focal SAR used as a measure of Simulated Skull Efficiency.

Results: Simulations with Experiments

Use of Simulation: Prediction of Thermal Response

Use of Simulation: Prediction of Thermal Response

Use of Simulation: Prediction of Thermal Response

Prediction: 200 Watts, 10 seconds, temperature rise 9°C

Clinical Thermal Response: 200 Watts, 10 seconds, temperature rise 8°C

Simulating Loss Components

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm						
Simulation-Type	Type Scattering ² Absorption (α) Speed of Sound ¹ (c) Density (ρ)					
	(Np/cm/MHz)	(Np/cm/MHz)	(m/s)	(g/cm ³)		
A. Simulated	Scattering based on voxel porosity ²	α=f+(1−f)×.04	c=1460+.7096*HU	ρ=fx3+(1-f)		
Efficiency		where f=bone				
		fraction				

Simulating Loss Components

	Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm				
Simulation-Type	Scattering ² (Np/cm/MHz)	Absorption (α) (Np/cm/MHz)	Speed of Sound ¹ (c) (m/s)	Density (ρ) (g/cm ³)	
A. Simulated Efficiency	Scattering based on voxel porosity ²	α=f+(1-f)×.04 where f=bone fraction	c=1460+.7096*HU	ρ=f×3+(1-f)	
B. Scattering-only	α,	0.04	1550	1000	

Simulating Loss Components

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm					
Simulation-Type	Scattering ²	Absorption (α)	Speed of Sound1 (c)	Density (p)	
	(Np/cm/MHz)	(Np/cm/MHz)	(m/s)	(g/cm ³)	
A Simulated Efficiency	Scattering based on voxel porosity ²	$\alpha = f + (1 - f) \times .04$ where f=bone fraction	c=1460+.7096*HU	ρ=f×3+(1-f)	
B. Scattering-only	α	0.04	1550	1000	
C. Reflection-only	0	0.04	1550	$\rho' = (\rho x c) / 1550$	

Simulating Loss Components

Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm					
Simulation-Type	Scattering ² (Np/cm/MHz)	Absorption (α) (Np/cm/MHz)	Speed of Sound ¹ (c) (m/s)	Density (ρ) (g/cm ³)	
A. Simulated Efficiency	Scattering based on voxel porosity ²	a=f+(1−f)×.04 where f=bone fraction	c=1460+.7096*HU	ρ=fx3+(1-f)	
B. Scattering-only	α,	0.04	1550	1000	
C. Reflection-only	0	0.04	1550	ρ'=(ρxc)/1550	
D. Absorption-only	0	α	1550	1000	
B. Homogenous Model	0	0.04	1550	1000	

Simulating Loss Components

	Table 1 Tissue Acoustic Properties, voxel size=0.5x0.5x0.685 mm					
Simulation-Type	Scattering ² (Np/cm/MHz)	Absorption (α) (Np/cm/MHz)	Speed of Sound ¹ (c) (m/s)	Density (p) (g/cm ³)		
A Simulated Efficiency	Scattering based on voxel porosity ²	a=f+(1-f)x.04 where f=bone fraction	c=1460+.7096*HU	ρ=fx3+(1-f)		
B. Scattering-only	α,	0.04	1550	1000		
C. Reflection-only	0	0.04	1550	ρ'=(ρxc)/1550		
D. Absorption-only	0	α	1550	1000		
E. Homogenous Model	0	0.04	1550	1000		

Each simulation modeled only one kind of acoustic loss while keeping all others

equal to the losses in a homogeneous model
 We decomposed each component of the acoustic loss in the propagation of the acoustic waves in the simulation—reflection, absorption and scattering—for each individual skull.

Component Analysis: Reflection, Absorption and Scattering

Component Analysis

Use of Simulation: Subject Selection

Use of Simulation: Subject Selection

Use of Simulation: Subject Selection

Use of Simulation: Subject Selection

Retrospective Analysis: Phase Correction

Summary

- Simulations to predict the variation in thermal responses noticed in clinical tcMRgFUS treatments in the brain
- Simulated skull efficiency correlates strongly with experimentally seen thermal response with an $\rm R^2$ of 0.85
- Simulations can be used for treatment planning and retrospective analysis of tcMRgFUS treatments
 - Patient Selection
 - Treatment Planning
 - Retrospective Analysis

Thank you!

