

Viscoelastic Response (VisR) Ultrasound for Noninvasively Assessing the Viscoelastic Properties of Tissue

Caterina M. Gallippi, Ph.D.

The Joint University of North Carolina Chapel Hill, North Carolina State University Department of Biomedical Engineering

The Mechanical Properties of Tissue are Diagnostically Relevant

Breast

Abdominal Organs

Musculoskeletal System

NC STATE UNIVERSITY

The Mechanical Properties of Tissue May be Assessed by Ultrasound

1. Expedite detection and differential diagnosis of diseases

2. Improve accuracy of disease diagnoses

3. Monitoring response to treatment

Ultrasound May Be Implemented to Assess Tissue Mechanical Property

www.usa.healthcare.siemens.com/ultrasound

Ultrasound May Be Implemented to Assess Tissue Mechanical Property

www.usa.healthcare.siemens.com/ultrasound

Ultrasound May Be Implemented to Assess Tissue Mechanical Property

www.usa.healthcare.siemens.com/ultrasound

ULTRASOUND Property Assessment by Ultrasound

- 1. Introduce mechanical excitation
 - Intrinsic or extrinsic
 - Static, periodic, or impulsive
- 2. Monitor tissue response - Deformation - Shear wave velocity

UNC	NCSU		
ULTRASOUND			

Acoustic Radiation Force

NC STATE UNIVERSITY

"The acoustic radiation force is produced by a change in the density of energy and momentum of the propagating waves because of the absorption, scattering or reflection from inclusions or from spatial variations in propagation velocity."

A. SALE	utaman terista Dayatyk 0 sam viet Ada dai : 10.1016 juli normatina 2010.0505	iki, Vil. 3, No. 1, pp. 129-129, 200 das ir Ukanus i k linities I. Linity Riddi is telli (IR-All Qikk consel K IR-2016-ast tust caller
d Review		
BIOMEDIC	AL APPLICATIONS OF RADIATION FORCE OF HISTORICAL ROOTS AND PHYSICAL BAS	FULTRASOUND: Is
Arau "ArlamLaborinies)	en P. Sorvazran, * OLES V. RUDEnko, ⁹⁷ and Wesley L Instin, NJ ^a Mazar Shiki Li weity, Mazar, Panim Fishadar, *B Kabban, Sandar, and *Criveity of Yemail, Bulingto	_ NYBORG ^X dánge králitie of Tichnology,
RE UNIVERSITY NORTH CAROLINE CHAPPEL DILL		NC STATE UNIVERS

Î

Optical Tracking of ARF Excitation

ARF in Application to 2D Imaging

NC STATE UNIVERSITY

UNC NCSU

Peak displacement conveys elasticity. How to measure *viscosity*?

UNC NCSU

UNC NEED VisR Relative Elasticity Distinguishes Material Elasticity

VisR Relative Viscosity Distinguishes Material Viscosity

VisR in Application to Monitoring Dystrophic Degeneration in Duchenne Muscular Dystrophy

ULTRASOUND Pre-Clinical VisR Demonstration in GRMD Dogs

UNC NOR Discriminates Fibrotic RF Muscle Versus Control

UNCENCED VisR Discriminates Fibrotic RF Muscle ULTRASOUND Versus Control

ULTRASOUND VisR τ Standard Deviation Versus MRI T2

UNC NCSU

ULTRASOUND research consortium VisR τ Standard Deviation Versus MRI RP

VisR τ Relatively Unchanged in Subject 1 Sartorius

VisR τ Increases in Subject 1 Gastrocnemius

Next Steps: Anisotropy

Tels allestarts y water classifier e canal, alle allestart all

NC STATE UNIVERSITY

Biological Tissue Exhibits Structural Anisotropy

VisR τ is angle dependent for asymmetric, but not symmetric, ARF focal configuration

VisR τ is Angle Dependent for Asymmetric, but not Symmetric, ARF Focal Configuration

Conclusions

- Ultrasound may be implemented to noninvasively assess the mechanical properties of tissue, which are diagnostically relevant.
- VisR ultrasound is a new acoustic radiation force-based approach to estimating tissue viscosity, elasticity, and degree of anisotropy.
- VisR has been applied to monitoring dystrophic muscle degeneration in Duchenne muscular dystrophy.
- Other applications under study include kidney and atherosclerosis.

Î		NC STATE UNIVERSITY

VisR Relative Elasticity and Relative Viscosity in Excised Pig Kidney

NC STATE UNIVERSITY

research consortium	
Siemens Medical Solutions USA, Inc. Ultrasound Division Gallippi Lab Members and Alumni • Mallory Selzo • Tomek Czernuszewicz • Chase DuBois • Robert Hinson • Rebecca Geist • Chris Moore	Preclinical Studies • Amanda Bettis • Sharla Birch • Dan Bogan • Janet Bogan • Janet Bogan • Jennifer Dow • Heather Heath-Barnet • Joe Kornegay • Gayle McGchee • Kathy Spaulding • Eric Snook • Martin Styner • Jiahui Wang • Janice Weaver
	FEM Simulations Kathy Nightingale Mark Palmeri

Thank You

Cli	nical Studies
٠	Melissa Caughe
•	Manisha Chonra

Melrose Fisher	
James Howard	J

Regina EmmettDiane Meyer

Funding Sources

- NIH Grants R01-NS074057, R01-HL092944, K02-HL105659
- The NIH Integrated Biomedical Research
- Training Program
 Muscular Dystrophy
- Association Parent Project Muscular Dystrophy

Ultrasound May Be Implemented to Assess Tissue Mechanical Property

Barr R.G. Applied Radiology. December, 2012.

Ultrasound May Be Implemented to Assess Tissue Mechanical Property

Kato K et al. Liver International. 2008;28(9):1264-1271.

NC S