Current Status of Supplementary Screening With Breast Ultrasound

Stephen A. Feig, M.D., FACR
Fong and Jean Tsai Professor of Women’s Imaging
Department of Radiologic Sciences
University of California, Irvine
School of Medicine

Swedish Two-County Trial: Cumulative Breast Cancer Mortality

31% Mortality Reduction At 30 Years Follow-up

Demonstrated Benefits From Screening Mammography

- Swedish Two-County Randomized Trial:
 31% mortality reduction for ages 40-74
- Swedish 7 County Service Screening Study:
 45% mortality reduction in screenees

Tabar et al, Radiol 2011
Duffy et al, Cancer 2002
Relative Likelihood of Interval Cancers

<table>
<thead>
<tr>
<th>Density</th>
<th>Odds Ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10%</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>10-24%</td>
<td>2.1</td>
<td>(0.9 - 5.2)</td>
</tr>
<tr>
<td>25-49%</td>
<td>3.6</td>
<td>(1.5 - 8.7)</td>
</tr>
<tr>
<td>50-74%</td>
<td>5.6</td>
<td>(2.1 - 15.3)</td>
</tr>
<tr>
<td>≥ 75%</td>
<td>17.8</td>
<td>(4.8 - 65.9)</td>
</tr>
</tbody>
</table>

p < .001

Can ultrasound find cancers missed by screening mammography?

Breast Scanner developed in Australia, 1965

Courtesy, Jack Jellins Ph.D.
Early Studies of Screening Ultrasound in 1980’s

- Inadequate detection of smaller cancers
- Excessive false positive biopsies
- Performance was time consuming
- Expensive

Improvements in Breast Ultrasound in 1990’s

- Better spatial resolution: 7.5 -10 MHz transducers
- Better contrast resolution
- Stavros criteria for interpretation

Cancers Detected by Ultrasound Alone In Dense Breasts: 6 Screening Series, 1995 - 2003

- 150 cancers / 42,838 exams
- 3.5 cancers / 1,000 exams
- 90% in dense breasts
- Mean tumor size of 0.9 – 1.1 cm
- All Stage 0 or Stage I
Increased Detection: Ultrasound and Mammography vs. Mammography Alone

<table>
<thead>
<tr>
<th>Study</th>
<th>Increased Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolb et al¹</td>
<td>42%</td>
</tr>
<tr>
<td>Buchberger et al²</td>
<td>37%</td>
</tr>
<tr>
<td>Leconte et al³</td>
<td>79%</td>
</tr>
</tbody>
</table>

¹Radiology 1998, 2002; ²AJR, 1999; ³AJR, 2003

False Positive Biopsies in Ultrasound Screening

- 2.5 x – 4.0 x higher than mammography
- Studies did not define biopsy criteria
- Higher false positive rates likely with ultrasound screening in community practice

Scientific Limitations of Screening Ultrasound Studies

- Non-blinded ultrasound interpretation
- Same radiologist read both modalities
- No documentation of technical quality or interpretive expertise
Multicenter Trial Protocol

- Independent interpretation of ultrasound and mammography
- Standardized ultrasound interpretive criteria
- High resolution ultrasound equipment
- Mammography and ultrasound technique monitored with quality control

Patients randomized to initial mammography or sonography
Ultrasound performed by radiologists
Radiologists:
 - received prior training in mammo and US interpretation
 - met interpretive performance standards prior to participation

High Risk Enrollment Requirements: At Least One of These Criteria

- BRCA-1 or 2 mutation
- Personal history of breast cancer
- Biopsy proven
 - Lobular carcinoma in situ (LCIS)
 - Atypical ductal hyperplasia (ADH)
 - Atypical lobular hyperplasia (ALH)
 - Atypical papillary lesion
- Prior radiation treatment of chest or axilla
- Gail of Claus model risk of \(\geq 25\% \)
Cancer Detection Rates at First Screening Round, ACRIN 6666 Trial:

Hand-held Ultrasound Screening of High Risk Women

• Mammography alone 7.6 / 1,000
• Mammography + US 11.8 / 1,000
• Supplementary yield for ultrasound 4.2 / 1,000
 or 55.3 % increase

Berg et al. JAMA 2008

Biopsy Positive Predictive Value at First Screening Round, ACRIN 6666 Trial:

Hand-held Ultrasound Screening of High Risk Women

• Mammography with Ultrasound correlation 22.6 %
• Ultrasound alone 8.9 %
• Mammography or Ultrasound 11.2 %

Berg et al. JAMA 2008

Results at Second and Third Screening Rounds: ACRIN 6666 Trial

• Supplementary yield of ultrasound = 3.7 cancers / 1,000 screens
• Biopsy PPV:
 Mammography alone = 38%
 Mammo + ultrasound = 16%

Berg et al., JAMA 2012; 307: 1394 - 1404
Limitations of Screening with Hand-held Ultrasound

- Exam time of 19 minutes (ACRIN Trial)
- Technique / Interpretation are linked and operator-dependent
- Need to document technologists’ skill for screening

Significance of Screening Ultrasound Performance Time

- Might lose money at screening mammography rates
- Low reimbursement might encourage excessively fast screening times
- Automated scanners might be the solution

Follow-Up of Sonographic vs Mammographic Probably Benign Lesions

- Sonographic follow-up is much more time consuming and operator dependant
Methods to Facilitate Follow-Up of Probably Benign Ultrasound Lesions

• Annual instead of 6 month follow-up
• Development of a high resolution, automated whole breast ultrasound scanner
Advantages of Coronal View

- New for breast ultrasound
- See slices of entire breast from skin to chest wall
- Tissue thickness reduced so better visualization

Invasive Ductal Carcinoma
Benign Fibroadenoma

Advantages of Automated Whole Breast Scanners
- Rapid acquisition time of 10 minutes
- Does not require physician performance
- Allows batch reading
- Can be integrated efficiently into breast center workflow

Interpretive Aspects of Automated Breast Ultrasound (ABUS)
- Suspicious findings may need hand-held confirmation and evaluation
- Hand-held transducer required for ultrasound-guided biopsy
- Some ABUS units have attached hand-held transducers
Automated Scanner with Handheld Capability

Increased Cancer Detection by Adding ABUS to DM For Screening Dense Breasts

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>DM + ABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Cancers</td>
<td>31%</td>
<td>19 / 62</td>
</tr>
<tr>
<td>DCIS</td>
<td>6%</td>
<td>2 / 31</td>
</tr>
<tr>
<td>Invasive Cancers</td>
<td>55%</td>
<td>28 / 51</td>
</tr>
<tr>
<td>Stage 1A or 1B</td>
<td>54%</td>
<td>20 / 37</td>
</tr>
</tbody>
</table>

Brem RF, Tabar L, Duffy SW, et al. Radiology 2014 online

Effect of Adding ABUS to DM for Screening Dense Breasts

<table>
<thead>
<tr>
<th></th>
<th>DM</th>
<th>DM + ABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancers/1000</td>
<td>5.4</td>
<td>7.3</td>
</tr>
<tr>
<td>Recall Rate</td>
<td>15.0%</td>
<td>28.5%</td>
</tr>
<tr>
<td>PPV – 3 (False + Biopsy Rate)</td>
<td>14.0%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

Brem RF, Tabar L, Duffy SW. Radiology 2014 online
False Positive Biopsies in Ultrasound Screening

- Greater than with mammography
- Yet, US-guided core biopsy is:
 - Faster than stereotactic
 - Less invasive than excisional

Relative Advantages of Supplementary Screening Modalities

- Ultrasound vs MRI
 - Less expensive equipment
 - More easily available
 - Faster examination
 - No intravenous contrast
- MRI vs Ultrasound
 - More sensitive test
High Risk Triple Screening Studies with Mammography, Ultrasound, and MRI

Cancer Detection

Combined Mammo and Ultrasound 55%
Combined Mammo and MRI 93%

Current Screening Recommendations

- Mammography
 - Annually from age 40 for average risk women
 - May begin earlier for high risk women
- MRI
 - Annually if lifetime risk >20%
 - No recommendation for 15 – 20 % lifetime risk
 - No MRI if risk < 15%
- Ultrasound
 - Possibly for dense breasts

2010 ACR/SBI Guidelines for Screening Women with Dense Breasts as Only Risk Factor

- Addition of ultrasound to mammography may be useful
- Considerations include:
 - lack of reimbursement,
 - exam performance time,
 - high false positive biopsy rate,
 - insufficient personnel to perform and interpret studies
Preliminary Comparison of Automated Breast Ultrasound and Digital Breast Tomosynthesis for Supplementary Screening of Dense Breasts

<table>
<thead>
<tr>
<th></th>
<th>ABUS</th>
<th>DBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Detection Rate</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Ionizing Radiation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Recall Rule</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>False Positive Biopsy Rate</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Reimbursement</td>
<td>Dx Only</td>
<td>$60 Extra</td>
</tr>
</tbody>
</table>

Research Agenda for Screening Dense Breasts

• How to reduce false positive bx’s for masses detected by us alone
• Compare screening with ABUS vs. hand-held transducers: detection rates, cancer size, recall rates

Research Agenda for Screening Dense Breasts

• Which breast densities and age groups benefit most from tomosynthesis vs. 2D digital?
• Compare ABUS and tomosynthesis vs. tomosynthesis alone.