Current Status of Supplementary Screening With Breast Ultrasound

Stephen A. Feig, M.D., FACR

Fong and Jean Tsai Professor of Women's Imaging
Department of Radiologic Sciences
University of California, Irvine
School of Medicine

Swedish Two-County Trial: Cumulative Breast Cancer Mortality

31% Mortality Reduction At 30 Years Follow-up

Demonstrated Benefits From Screening Mammography

- Swedish Two-County Randomized Trial:
 31% mortality reduction for ages 40-74
- Swedish 7 County Service Screening Study:
 45% mortality reduction in screenees

Tabar et al, Radiol 2011 Duffy et al, Cancer 2002

Relative Likelihood of Interval Cancers			
Density	Odds Ratio	95% CI	
< 10%	1.0		
10-24%	2.1	(0.9 - 5.2)	
25-49%	3.6	(1.5 - 8.7)	
50-74%	5.6	(2.1 - 15.3)	
<u>></u> 75%	17.8	(4.8 - 65.9)	
		p < .001	
Boyd et al New England	J Med 2007;356:227-236		

Can ultrasound find cancers missed by screening mammography?

Early Studies of Screening Ultrasound in 1980's

- Inadequate detection of smaller cancers
- Excessive false positive biopsies
- Performance was time consuming
- Expensive

Improvements in Breast Ultrasound in 1990's

- Better spatial resolution:
 7.5 -10 MHz transducers
- Better contrast resolution
- Stavros criteria for interpretation

Cancers Detected by Ultrasound Alone In Dense Breasts:

6 Screening Series, 1995 - 2003

- 150 cancers / 42,838 exams
- 3.5 cancers / 1,000 exams
- 90% in dense breasts
- Mean tumor size of 0.9 1.1 cm
- All Stage 0 or Stage I

•		
•		
•		
•		
•		
•		
•		

Increased Detection: Ultrasound and Mammography vs. Mammography Alone

Study	Increased Detection
Kolb et al ¹	42%
Buchberger et al ²	37%
Leconte et al ³	79%

¹Radiology 1998, 2002; ²AJR, 1999; ³AJR, 2003

False Positive Biopsies in Ultrasound Screening

- 2.5 x 4.0 x higher than mammography
- Studies did not define biopsy criteria
- Higher false positive rates likely with ultrasound screening in community practice

Scientific Limitations of Screening Ultrasound Studies

- Non-blinded ultrasound interpretation
- Same radiologist read both modalities
- No documentation of technical quality or interpretive expertise

Multicenter Trial Protocol

- Independent interpretation of ultrasound and mammography
- Standardized ultrasound interpretive criteria
- High resolution ultrasound equipment
- Mammography and ultrasound technique monitored with quality control

Multicenter Trial Protocol

- Patients randomized to initial mammography or sonography
- Ultrasound performed by radiologists
- Radiologists:
 - received prior training in mammo and US interpretation
 - met interpretive performance standards prior to participation

High Risk Enrollment Requirements: At Least One of These Criteria

- BRCA-1 or 2 mutation
- · Personal history of breast cancer
- Biopsy proven
 - Lobular carcinoma in situ (LCIS)
 - Atypical ductal hyperplasia (ADH)
 - Atypical lobular hyperplasia (ALH)
 - Atypical papillary lesion
- Prior radiation treatment of chest or axilla
- Gail of Claus model risk of ≥25%

	_

Cancer Detection Rates at First Screening Round, ACRIN 6666 Trial:

Hand-held Ultrasound Screening of High Risk Women

Mammography alone 7.6 / 1,000
 Mammography + US 11.8 / 1,000

Supplementary yield

for ultrasound 4.2 / 1,000 or 55.3 % increase

Berg et.al. JAMA 2008

Biopsy Positive Predictive Value at First Screening Round, ACRIN 6666 Trial:

Hand-held Ultrasound Screening of High Risk Women

Mammography with 22.6 %
 Ultrasound correlation

Ultrasound alone
 8.9 %

Mammography or Ultrasound 11.2 %

Berg et.al. JAMA 2008

Results at Second and Third Screening Rounds: ACRIN 6666 Trial

- Supplementary yield of ultrasound
 3.7 cancers / 1,000 screens
- Biopsy PPV:

Mammography alone = 38%

Mammo + ultrasound = 16%

Berg et all, JA MA 2012; 307: 1394 - 1404

Limitations of Screening with Hand-held Ultrasound

- Exam time of 19 minutes (ACRIN Trial)
- Technique / Interpretation are linked and operator-dependent
- Need to document technologists' skill for screening

Significance of Screening Ultrasound Performance Time

- Might lose money at screening mammography rates
- Low reimbursement might encourage excessively fast screening times
- Automated scanners might be the solution

Follow-Up of Sonographic vs Mammographic Probably Benign Lesions

Sonographic follow-up
 is much more time consuming
 and operator dependant

Methods to Facilitate Follow-Up of Probably Benign Ultrasound Lesions

- Annual instead of 6 month follow-up
- Development of a high resolution, automated whole breast ultrasound scanner

Advantages of Coronal View

- New for breast ultrasound
- See slices of entire breast from skin to chest wall
- Tissue thickness reduced so better visualization

Advantages of Automated Whole Breast Scanners

- Rapid acquisition time of 10 minutes
- Does not require physician performance
- Allows batch reading
- Can be integrated efficiently into breast center workflow

Interpretive Aspects of Automated Breast Ultrasound (ABUS)

- Suspicious findings may need hand-held confirmation and evaluation
- Hand-held transducer required for ultrasound-guided biopsy
- Some ABUS units have attached hand-held transducers

Increased Cancer Detection by Adding ABUS to DM For Screening Dense Breasts		
All Cancers	31%	19 / 62
DCIS	6%	2/31
Invasive Cancers	55%	28 / 51
Stage 1A or 1B	54%	20 / 37
Brem RF, Tabar L, Duffy SW, et al. Radiology 2014 online		

Effect of Adding ABUS to DM for Screening Dense Breasts			
DM DM + ABUS			
Cancers/1000	5.4	7.3	
Recall Rate	15.0%	28.5%	
PPV – 3 (False + Biopsy Rate)	14.0%	9.8%	
Brem RF, Tabar L, Duffy SW. Radiology 2014 online			

False Positive Biopsies in Ultrasound Screening

- Greater than with mammography
- Yet, US-guided core biopsy is:
 - Faster than stereotactic
 - Less invasive than excisional

Relative Advantages of Supplementary Screening Modalities

- Ultrasound vs MRI
 - Less expensive equipment
 - More easily available
 - Faster examination
 - No intravenous contrast
- MRI vs Ultrasound
 - More sensitive test

High Risk Triple Screening Studies with Mammography, Ultrasound, and MRI **Cancer Detection Combined Mammo** 55% and Ultrasound **Combined Mammo** 93% and MRI Warner et al, JAMA 2004; Kuhl et al, J Clin Oncol 2005; Sardanelli, et al, Radiol 2007; Lehman et al, Radiol 2007 **Current Screening Recommendations** Mammography - Annually from age 40 for average risk women - May begin earlier for high risk women MRI - Annually if lifetime risk >20% - No recommendation for 15 - 20 % lifetime risk - No MRI if risk < 15% Ultrasound - Possibly for dense breasts 2010 ACR/SBI Guidelines for **Screening Women with Dense Breasts** as Only Risk Factor Addition of ultrasound to mammography may be useful

· Considerations include:

lack of reimbursement,
exam performance time,
high false positive biopsy rate,

interpret studies

- insufficient personnel to perform and

Preliminary Comparison of Automated Breast Ultrasound and Digital Breast Tomosynthesis for Supplementary Screening of Dense Breasts

Early Detection Rate Ionizing Radiation Recall Rule	ABUS Increased No Increased	<u>DBT</u> Increased Yes Decreased
False Positive Biopsy Rate	Increased	Decreased
Reimbursement	Dx Only	\$60 Extra

Research Agenda for Screening Dense Breasts

- How to reduce false positive bx's for masses detected by us alone
- Compare screening with ABUS vs. hand-held transducers: detection rates, cancer size, recall rates

Research Agenda for Screening Dense Breasts

- Which breast densities and age groups benefit most from tomosynthesis vs. 2D digital?
- Compare ABUS and tomosynthesis vs. tomosynthesis alone