Ultrasound Tomography: A Breast Imaging Modality Whose Time Has Come

Neb Duric,1,2, Peter Littrup,2, Olivier Roy,2 Cuiping Li2, Steve Schmidt2, Heather Rone2
1Karmanos Cancer Institute, Wayne State University, Detroit, MI
2Delphinus Medical Technologies, Plymouth, MI
3Brown University, Providence, RI

Disclosure
Neb Duric and Peter Littrup have financial interests in Delphinus Medical Technologies. Potential financial conflicts of interest are managed by Wayne State University.
History of Medical Ultrasound Tomography

- 1950's – Pulse-echo technique (Wild and Reid)
- 1950's – Mechanical rotation in a water bath
- 1978 – First cross-sectional transmission images of the breast (Howry et al)
- Use of sound speed and attenuation to characterize tissue (Glover et al, Greenleaf and Johnson)
- 1981 – First cross-sectional images that combine reflection and transmission imaging (Carson et al)
- 1997 – First clinical use of diffraction tomography (Andre et al)
- 2007 – Full wave-based reconstructions of sound speed and attenuation for whole breast (Johnson et al; Techniscan Medical)
- 2007 – Simultaneous reflection and transmission imaging of the whole breast (Duric et al)
- 2008 – Attenuation based tomography (Marmarelis et al)
- 2010 – True 3-D reflection tomography (Ruiter et al)
- 2013/2014 – FDA clearances for the SoftVue system (Delphinus Medical)

Screening Dense Breasts

- X-ray mammography detects ~ 5 cancers per 1000 screens
 - Low sensitivity in women with dense breast tissue
 - Tomosynthesis may help
 - unlikely to create a paradigm shift in performance
 - generates even higher levels of ionizing radiation
 - MRI can address these limitations, but
 - long exam times and the use of contrast agents.
 - expensive for routine use although “fast MRI” holds promise
 - PEM and MBI limited by cost and radiation concerns.
 - Other modalities such as OCT and PAT are still in early development
 - Studies show effectiveness of HHUS and ABUS for women with dense breasts.
 - Up to 4.5 extra cancers detected per 1000 screens.
 - Predominantly node-negative invasive cancers

Screening Ultrasound (US) Studies

<table>
<thead>
<tr>
<th>Study Authors</th>
<th>Year</th>
<th>Type</th>
<th>Exams</th>
<th>US Only</th>
<th>Cancers Yield per 1000 S Irene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brem, et al.</td>
<td>2014</td>
<td>Multi</td>
<td>ABUS</td>
<td>15,318</td>
<td>30.96</td>
</tr>
<tr>
<td>Berg, et al.</td>
<td>2012</td>
<td>Multi</td>
<td>HHUS</td>
<td>7,473</td>
<td>4.28</td>
</tr>
<tr>
<td>Hooley, et al.</td>
<td>2012</td>
<td>Single</td>
<td>HHUS</td>
<td>935</td>
<td>3.21</td>
</tr>
<tr>
<td>Kelly, et al.</td>
<td>2010</td>
<td>Multi</td>
<td>AWBU</td>
<td>6,425</td>
<td>3.58</td>
</tr>
<tr>
<td>Corsetti, et al.</td>
<td>2008</td>
<td>Multi</td>
<td>HHUS</td>
<td>9,157</td>
<td>4.08</td>
</tr>
<tr>
<td>Crystal, et al.</td>
<td>2003</td>
<td>Single</td>
<td>HHUS</td>
<td>1,517</td>
<td>3.41</td>
</tr>
<tr>
<td>Kolb, et al.</td>
<td>2002</td>
<td>Single</td>
<td>HHUS</td>
<td>13,547</td>
<td>2.76</td>
</tr>
<tr>
<td>Kaplan</td>
<td>2001</td>
<td>Single</td>
<td>HHUS</td>
<td>1,862</td>
<td>3.22</td>
</tr>
<tr>
<td>Buchberger, et al.</td>
<td>2000</td>
<td>Single</td>
<td>HHUS</td>
<td>8,103</td>
<td>3.95</td>
</tr>
<tr>
<td>Gordon, et al.</td>
<td>1995</td>
<td>Single</td>
<td>HHUS</td>
<td>12,703</td>
<td>3.80</td>
</tr>
</tbody>
</table>
Study Averages

<table>
<thead>
<tr>
<th>Type</th>
<th>Average</th>
<th>NINV</th>
<th>DCIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography</td>
<td>NINV=3.3/1000</td>
<td>NDCIS=0.7/1000</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>NINV=3.1/1000</td>
<td>NDCIS=0.2/1000</td>
<td></td>
</tr>
</tbody>
</table>

The Dense Breast Screening Challenge

- US almost doubles invasive cancer detection
- Recall rates also doubled
- Cost benefit trade-off uncertain

Sprague SB, et al Ann Intern Med. 2015 Feb 3;162

Results from UST Scanner at KCI
Tissue specific imaging

UST Imaging Modes

Reflection (B Mode) Imaging

Sound Speed

Attenuation

Stiffness

Quantitative Measurements
ACKNOWLEDGMENTS: This research was supported by the NIH through grant number R44CA165320-01A.

Future of UST

High image quality relies on:
- Dense sampling of the scattered field
- Uniform and strong illumination of the object.
- Physics-based reconstruction algorithms
- Solution requires large amounts of data to satisfy the sampling constraint and advanced computing power to enable physics based modeling for generating the output image.

Image reconstruction techniques:
- Beamforming or SAT techniques for reflection imaging
- Straight ray tomography (backprojection) for transmission imaging
- Curved ray tomography
- Waveform tomography

Moore’s Law

Computational complexity

The Economist (Oct, 2011)
Conclusions

- Adjunctive screening with US increases sensitivity in dense breasts
 - Almost doubles invasive cancer detection
 - Increases call back rates

- UST may lower barriers to adoption for screening
 - UST’s tissue specific imaging may help reduce call back rates
 - Diagnostic studies suggest AUC improvement
 - UST will rapidly improve with time by riding Moore’s Law

PMA trial for supplemental screening planned