

Real-time and offline treatment delivery error detection via aSi EPID transmission dosimetry

¹Jeffrey Siebers

¹University of Virginia, Charlottesville, VA, USA

Disclosures

 This work has been supported in part by
 2013 ROI Grant from ASTRO "Safety and Quality: IMRT treatment delivery accuracy", Peter Greer PI
 Varian Medical Systems (6/2015)

- Understand
 - real-time EPID-based transmission dosimetry
 - goals of real-time delivery monitoring

Background

- QA methods lag modern delivery capabilities
- Significant error pathways persist even when pretreatment QA is performed
 - R&V parameters could be altered inter-fractionally
 - unintentional modification while viewing, database corruption, ...
 - Equipment could malfunction
 - position encoder disconnect from leaf, ...
 - Current pre-treatment QA is insensitive to delivery errors
 - $%\gamma < 1$ (3%,3mm) reliably detects 10% fluence errors in 20x20 mm² area
 - During treatment motion & intra- & inter-fractional patient changes can occur
- Practical QA needed for real-time adaptive RT

during treatment uses

- dose back-projection-based estimators
 - point-dose
 - iso-center-plane dose
 - > 3D-dose (PTV dose in accelerator coordinate system)
- tissue-localization (±fiducials)
- patient changes (Δ attenuation / tumor shrinkage)
- MLC leaf position variations

Catching errors with in vivo EPID dosimetry

 A. Mans,^{a)} M. Wendling,^{b)} L. N. McDermott,^{c)} J.-J. Sonke, R. Tielenburg, R. Vijlbrief,
 B. Mijnheer, M. van Herk, and J. C. Stroom
 Department of Radiation Oncology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

2638 Med. Phys. 37 (6), June 2010

0094-2405/2010/37(6)/2638/7/\$30.00

© 2010 Am. Assoc. Phys. Med. 2638

Gross error rates ~0.3%

 Most detected errors were not / would NOT have been picked up by pre-treatment QA

To date, EPID-base exit-fluence has NOT been used to

27%	1.	Monitor fiducial locations
20%	2.	Detect miss-positioned MLC leaves
10%	3.	Detect tumor spread
17%	4.	Re-compute PTV dose
27%	5.	Detect tumor response

To date, EPID-base exit-fluence has NOT been used to

- 1. Monitor fiducial locations:
 - Lin, W.-Y., *et al.* (2013). Real-time automatic fiducial marker tracking in low contrast cine-MV images. *Medical Physics*, *40*(1), 011715.
- 2. Detect miss-positioned MLC leaves: Fuangrod, T., *et al.* (2014). An independent system for real-time dynamic multileaf collimation trajectory verification using EPID. *Physics in Medicine* and *Biology*, 59(1), 61–81
- 3. Detect tumor spread:

This, to my knowledge, has not been reported in published works.

4. Re-compute PTV dose:

Mans, A, et al. (2010). Catching errors with in vivo EPID dosimetry. *Medical Physics*, *37*(6), 2638–2644.

5. Tumor shrinkage:

McDermott, L. *et al.* (2006). Anatomy changes in radiotherapy detected using portal imaging. *Radiotherapy and Oncology*, *79*(2), 211–217. http://doi.org/10.1016/j.radonc.2006.04.003

To date, EPID-base exit-fluence has NOT been used to

- 1. Monitor fiducial locations:
 - Lin, W.-Y., *et al.* (2013). Real-time automatic fiducial marker tracking in low contrast cine-MV images. *Medical Physics*, *40*(1), 011715.
- 2. Detect miss-positioned MLC leaves: Fuangrod, T., *et al.* (2014). An independent system for real-time dynamic multileaf collimation trajectory verification using EPID. *Physics in Medicine and Biology*, *59*(1), 61–81.
- 3. Detect tumor spread:

This, to my knowledge, has not been reported in published works.

4. Re-compute PTV dose:

Mans, A, *et al.* (2010). Catching errors with in vivo EPID dosimetry. *Medical Physics*, *37*(6), 2638–2644.

5. Tumor shrinkage:

McDermott, L. *et al.* (2006). Anatomy changes in radiotherapy detected using portal imaging. *Radiotherapy and Oncology*, *79*(2), 211–217. http://doi.org/10.1016/j.radonc.2006.04.003

An example real-time QA program

ASTRO Radiation Oncology Institute Grant

International consortium

Center				
Calvary Mater Newcastle (CMN) – Lead Site				
Northern Sydney Cancer Centre (NSCC)				
University of Virginia (UVA)				
Cancer Care Manitoba (CCM)				
Central Coast Cancer Center (CCCC)				
Memorial Sloan Kettering Cancer Center (MSKCC)				

- verification as the radiation is delivered to the patient for every fraction
- EPID-based detection

Real-time verification

Center	Linac	Energy	MLC	EPID
Calvary Mater Newcastle (CMN) – Lead Site	C-Series (4)	6X	Millenium	aS1000
	TB2.0	6X, 10X	HDMLC	aS1200
		6XFFF, 10XFFF	HDMLC	aS1200
Northern Sydney Cancer Centre (NSCC)	C-Series	6X	Millenium	aS1000
	TB2.0	6X	HDMLC	aS1000
University of Virginia (UVA)	TB1.5	6X, 10X, 15X	Millenium	aS1000
		6XFFF, 10XFFF	Millenium	aS1000
	C-Series	6X, 15X	Millenium	aS1000
Cancer Care of Virginia (CCM)	C-Series	6X	Millenium	aS1000
Central Coast Cancer Center (CCCC)	C-Series (2)	6X	Millenium	aS1000
Memorial Sloan Kettering Cancer Center (MSKCC)	TB2.0	6X, 10X	Millenium	aS1000
	TB2.0	6X	Millenium	aS1200

- diverse equipment
- goals:
 - Implementation
 - Quantify gross error rate

Description of research project

- Predict using a model the "cine" EPID images that should be measured during the patient's radiation delivery
- Acquire EPID cine images during the delivery (frame-rate ~ 7 Hz) <u>Detection within 0.14 sec</u>
- Compare the measured to the predicted in real-time

Courtesy of Peter Greer

• Development of optimal error detection tools – patient uncertainties

Courtesy of Peter Greer

UNIVERSITY VIRGINIA HEALTH SYSTEM

Prediction

Delivery

RSITY

vatch DOG	🙏 wd_realtime_comments				
	 Fraction outcome All Good Not so sure Warning 	Enter comments here			
	I	Site: Prostate			
	What could be the issue				
	Anatomy	Setup / equipment	Other		
	Weight loss	Mask / Shell	Reaction to chemo		
	Bowel full	Mouth bite	EPID/OBI issue		
	Wind / gas	Patient motion			
	Bladder over full	Patient pain / anxiety	WatchDog / User		
	🗆 Bladder under full	Long treatment session	 Software issue Late start Wrong patient Forgot kv CBCT 		
]		
		Finish			
		Loading predicted frameset for beam 1 Finished loading 1 beams	A		
>250 patient Thousands	s to date of fractions	Preparing predicted frameset done (2.6 Allocating memory for data acquisition d Begining frame collection. Waiting for the Save/Reset	l0sec) done (0.00sec) first valid frame		
			SINIA System		

x

Current WD application

during-treatment-delivery Gross-error detection (>10% from Rx)
 Active exit-fluence monitor
 Active MLC-position monitoring

post-treatment -delivery
 Non-gross error detection (>5%, <10%)

EPID-base exit-fluence dosimetry can detect gross delivery errors as fast as

17%	1.	Between patient fractions
23%	2.	Between beams of a fraction
17%	3.	Within 10 seconds
17%	4.	Within 1 second

^{27%} 5. Within < 0.2 seconds

EPID-base exit-fluence dosimetry can detect gross delivery errors as fast as

5. Within <0.2 seconds

The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).

Fuangrod, T., *et al.* (2013). A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment. *Medical Physics*, *40*(9), 091907.

Real-time gross error detection is currently possible.

UVA post-delivery tools

- Offline leaf position analysis
 - Image-based edge detection
 - Log-based
- Image-based larger deviation due to leaf motion during image acquisition

lea

 \triangleright

Im

de

m

ac

HEALTH SYSTEM Department of Radiation Oncology

Offline Treatment Delivery QA

Patient Identifier:						
Tx Start Date:						
Tx End Date:						
Fx Delivered:		10				
Fx Analyzed:		9				
Missing Fractions fro	m Analysis (if any):	Fx 3 (7 /14)				
Number of Fields:		2				
Tx Type:		Rapid Arc				
Comments:		EPID images utilize gantry angles from machine logs, synchronized by EPID and machine time-stamps.				
QA performed by:	Kunal Kathuria	QA completion date: 11/14				

EPID image-based leaf position analysis. Software Versions: 1.1 (Analysis), 103 (Prediction), 102 (Acquisition)

Tx Day/Fraction	Field	"å (cm)	a (cm)	Fox (%)	Pass/Fail
AirScan	1	-0.036	0.1549	92.75	Pass
	2	0.036	0.1412	93.58	Pass
1	1	-0.036	0.1361	95.89	Pass
	2	0.035	0.2325	85.90	Pass
2	1	-0.036	0.1881	88.63	Pass
	2	0.038	0.2393	85.33	Pass
3	n/a	n/a	n/a	n/a	n/a
4	1	-0.035	0.1385	95.72	Pass
	2	0.037	0.2371	85.46	Pass
5	1	-0.036	0.1932	87.74	Pass
	2	0.039	0.2194	87.00	Pass
6	1	-0.038	0.1452	94.18	Pass
	2	0.038	0.1871	90.48	Pass
7	1	-0.034	0.1779	91.65	Pass
	2	0.039	0.1782	91.16	Pass
8	1	-0.036	0.1933	91.39	Pass
	2	0.037	0.2449	85.18	Pass
9	1	-0.039	0.1245	97.10	Pass
	2	0.036	0.3387	80.17	Pass
10	1	-0.034	0.1994	87.94	Pass
	2	0.039	0.1769	91.17	Pass

 $\overline{\Delta}$ = Average deviation between predicted and measured leaf positions σ_{Δ} = Standard deviation F_{OK} = Fraction of active leaves with deviation < 3 mm Passing Criteria: >70% (image-based leaf detection algorithm)

Dynalog-based leaf position analysis Software Version: 1.1 (Analysis)

Tx Day/Fraction	Field	7å (cm)	o _A (cm)	Fox (%)	Pass/Fai
AirScan	1	-0.0001	0.0115	100	Pass
	2	0.0002	0.0098	100	Pass
1	1	-0.0001	0.0109	100	Pass
	2	-0.0002	0.0093	100	Pass
2	1	0.0001	0.0109	100	Pass
	2	-0.0002	0.0093	100	Pass
3	n/a	n/a	n/a	n/a	n/a
4	1	0.0003	0.0109	100	Pass
	2	0.0002	0.0093	100	Pass
5	1	0.0002	0.0109	100	Pass
	2	0.0002	0.0093	100	Pass
6	1	-0.0001	0.0109	100	Pass
	2	0.0002	0.0093	100	Pass
7	1	0.0002	0.0109	100	Pass
	2	0.0000	0.0093	100	Pass
8	1	0.0002	0.0109	100	Pass
	2	0.0002	0.0098	100	Pass
9	1	-0.0001	0.0109	100	Pass
	2	-0.0002	0.0098	100	Pass
10	1	0.0002	0.0109	100	Pass
	2	0.0001	0.0098	100	Pass

 $\overline{\Delta}$ = Average deviation between planned and logged leaf positions σ_{Δ} = Standard deviation

F_{OK} = Fraction of active leaves with deviation < 3 mm Passing Criteria: >98% (control system should ensure)

₹"

ion / cm

Overall QA Verdict: Pass

Comments: Patient 1 data (1st Watchdog Patient) successfully analyzed by Watchdog offline QA. No real-time analysis was performed during treatment delivery.

Beam monitoring

 Beam monitoring
 Intentional error via Tx beam miss-match

Summary

- Described a delivery-system independent realtime QA system
- Demonstrated functionality for gross error detection
- May be possible to detect patient/attenuator changes (in real time)
- Will
 - enable on-line adaptive RT
 - permit quantification of inter-fractional error rates

