UCLA

Ke Sheng, Ph.D., DABR Professor of Radiation Oncology University of California, Los Angeles

MR SIMULATION FOR RADIOTHERAPY

Simultaneous integrated boost of the intraprostatic lesions

MR geometrical distortions

Compared to CT, MR images have an intricate geometric distortion problem that is caused by:

- B0 inhomogeneity
 Can be corrected by shi
- Susceptibility (tissue air/bone interface)
- Gradient nonlinearity
- Contribute most to observed distortion
- Chemical shift
 Relatively small

The distortion if uncorrected may be cause segmentation and dose calculation errors in radiotherapy relying on MR simulation.

MR image distortions using a pelvic phantom and deformable registration

Question 1: MRI geometrical distortion is caused by?

20%	(a). B0 field inhomogeneity
20%	(b). Susceptibility artifacts
20%	(c). Chemical shift
20%	(d). Gradient nonlinearity
20%	(e). All the above

MR-CT registration

Rigid/manual registration Example: Brain, head and neck Affine registration Example: Head and neck Deformable registration Example: Abdominal and pelvis

MR CT registration of the prostate (a) (e) (f) (d) B-spline warped MR Adaptive FEM СТ Average prostate centroid distance 3.7 mm using commercial B-spline registration

Δ

MRI only simulation

- Avoid the uncertainties from MR-CT registration
 Reduce patient exposure to imaging doses
- For MR guided radiotherapy, the MR simulation provides more native imaging format for registration (avoid CT-MR registration during IMRT)

Challenges

- Need electron density for dose calculation and CT IGRT
- Not straightforward to generate DRR
 Compromise between limited FOV and high resolution
- Low throughput

UCI A

DRR from pseudo MRI Manual, semi-automated and automated bone segmentation w used to create pelvic bony anatomies from MR and then DRR Chen L et al. IJROBP 68(3), 200

Electron density estimation for MRI

- Direct segmentation
 Bulk density assignment
- Atlas based method Generate average MR/CT data set with individual argan labeli

CI A

 Classification-based method Based on image texture analysis and learning

Require a priori CT-MR registration

Question 2: Compared to CT, what is the expected dosimetric difference using MR for planning after density correction?

20%	(a). 0.5%	
20%	(b). 2%	
20%	(c). 8%	
20%	(d). 12%	
20%	(e). 18%	
		_

Answer to question 2

(b). 2%

UCLA

References: Brock KK. Int. J. Radiation Oncology Biol. Phys., 76(2), pp. 583–596
Zhong et al. Phys. Med. Biol. 60 (2015) 2837–2851

Summary

- MRI is becoming increasingly important in radiotherapy
- MRI geometrical distortion can be manageable using the vendors' tool but it needs to be rigorously QA'd for both the specific machine and the process.
- MRI-CT registration is challenging and error prone, particularly deformable registration.
 Multiple methods are available to assign electron
- Multiple methods are available to assign electron density to MRI for dose calculation and generation of DRR.
- The process to assign electron density can involve manual segmentation that is labor intensive.
- Bone (teeth) density contributes to the majority of density heterogeneity effects.