MR QA/QC for MRgRT

Rick Layman, PhD, DABR Department of Radiology July 13, 2015

The James

Creating a cancer-free world. One person, one discovery at a time.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Quality Assurance and Control

"Quality begins with proper equipment selection"

W.R. Hendee The Selection and Performance of Radiologic Equipment, Baltimore, MD: Williams and Wilkins, 1985, p. 460.

THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Quality Assurance and Control

"Quality begins with proper equipment selection"

W.R. Hendee The Selection and Performance of Radiologic Equipment, Baltimore, MD: Williams and Wilkins, 1985, p. 460.

- Consult with Diagnostic Radiologist and Physicist
- Work collaboratively and develop synergies

XNER MEDICAL CENTER

Agenda

MR Siting Considerations

Imaging Quality Control

MR Simulation Specific QC

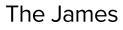
THE OHIO STATE UNIVERSITY

Agenda

MR Siting Considerations

Imaging Quality Control

MR Simulation Specific QC


THE OHIO STATE UNIVERSITY

Siting Considerations

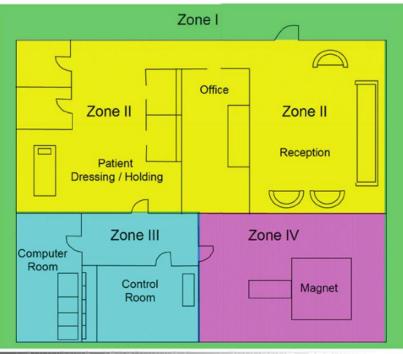
New Comprehensive Cancer Center

- December 2014 Opening
- 275 private in-patient beds
- Radiation Oncology located on 2nd floor
- 7 LINACS with OBI and CBCT
- CT Simulator
- PET/CT Simulator
- Brachytherapy Suite
- MR Simulator



Siting Considerations

Siting Considerations



MRI Zones

Zone 1: free accessible Zone 2: interface Zone 3: restricted area Zone 4: MR magnet room MR Personnel Non-MR personnel: patients, visitors, staff Level 1: passed minimal safety and education training, Zone 3-4 Level 2: extensively trained, gatekeeper of Zone 4

The James

9

Siting Requirements – Interfere with Magnet

Source of Interference	1.5T X/Y and Z Axis	3.0T X/Y and Z axis
Steel reinforcement	4'-2"	4'-2"
Water cooling unit, chiller	13'-1"	13'-1"
Transport devices up to 440 lbs	17'-5" / 21'-40"	19'-8" / 22'-11"
Vehicles up to 2,000 lbs	18'-5" / 24'-8"	21'-3" / 26"-2"
Elevators, trucks up to 10,000 lbs	20'-5" / 29'-7"	22'-11" / 31'-2"
AC transformers less than 100 KVA	39'-5" / 26'-2"	39'-4" / 26'-2"
AC cables, motors less than 100 AMPS	9'-10" / 6'-6"	9'-10" / 6'-6"

Note: Example specifications applicable to Siemens Skyra (3T) and Aera (1.5T), Siemens Healthcare, Erlangen, Germany

Siting Considerations (Magnetic Fringe Fields) – Interfere with Object

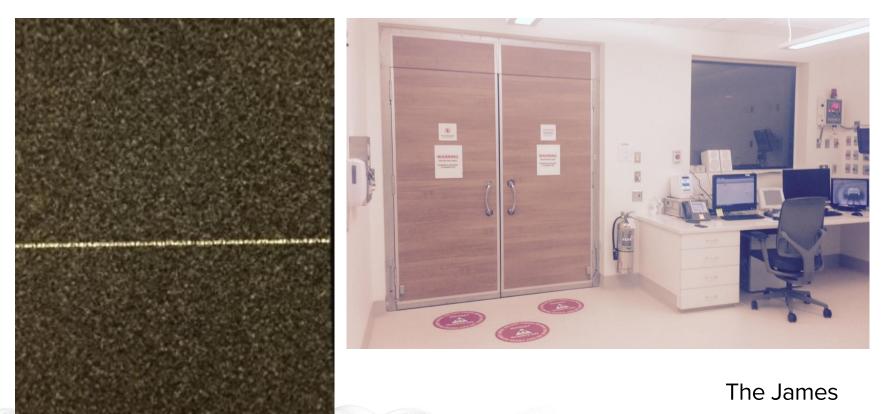
Devices	Field Strength	1.5T X/Y and Z axis	3.0T X/Y and Z axis
Small motors, watches, cameras, credit card	3.0 mT	6'-1" / 9'-2"	6'-11" / 10'-6"
Computers, magnetic disk, processors	1.0 mT	7"-3" / 11'-6"	7'-7" / 13'-2"
Cardiac pacemakers, x-ray tubes, insulin pumps	0.5 mT	8'-3" / 13'-2"	8'-7" / 15'-2"
Color monitors, CT scanner	0.15 mT	9'-9" / 16'-1"	11'-2" / 20'-1"
LINAC	0.1 mT	10"-4" / 17'-1'	12'-6" / 22'-4"
X-ray image intensifier, gamma camera, PET/cyclotron	0.05 mT	13'-1" / 22'-3"	16'1" / 26'-11"

Note: Example specifications applicable to Siemens Skyra (3T) and Aera (1.5T), Siemens Healthcare, Erlangen, Germany

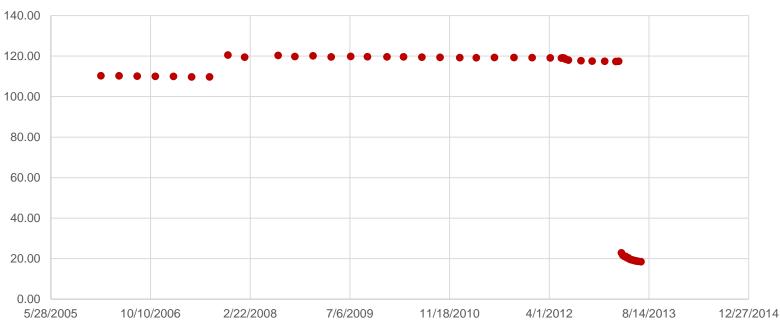
Siting Considerations (Magnetic Fringe Fields) – Interfere with Object

Devices	Field Strength	1.5T X/Y and Z axis	3.0T X/Y and Z axis
Small motors, watches, cameras, credit card	3.0 mT	6'-1" / 9'-2"	6'-11" / 10'-6"
Computers, magnetic disk, processors	1.0 mT	7"-3" / 11'-6"	7'-7" / 13'-2"
Cardiac pacemakers, x-ray tubes, insulin pumps	0.5 mT	8'-3" / 13'-2"	8'-7" / 15'-2"
Color monitors, CT scanner	0.15 mT	9'-9" / 16'-1"	11'-2" / 20'-1"
LINAC	0.1 mT	10"-4" / 17'-1'	12'-6" / 22'-4"
X-ray image intensifier, gamma camera, PET/cyclotron	0.05 mT	13'-1" / 22'-3"	16'1" / 26'-11"

Note: Example specifications applicable to Siemens Skyra (3T) and Aera (1.5T), Siemens Healthcare, Erlangen, Germany



MR Artifact



MR Artifact

QC Example - CF Change Over Time

Central Frequency (ppm)

THE OHIO STATE UNIVERSITY

QC Example - CF Change Over Time

Central Frequency (ppm)

Agenda

MR Siting Considerations

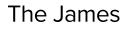
Imaging Quality Control

MR Simulation Specific QC

THE OHIO STATE UNIVERSITY

Updates and Changes to ACR MRI QC Manual

- Interslice RF interference removed
- Magnetic homogeneity and percent image uniformity procedure changes
 - ≥87.5% for systems up to 1.5T
 - ≥82% for 3T systems
- Signal ghosting added
 - ≤2.5%
- Low-contrast detection
 - 9 rows total for systems up to 1.5T
 - 37 rows for 3T systems
- Assessment of MR safety program


ACR MRI Phantom

- Filled with nickel chloride and sodium chloride solution (10 mM NiCl₂ and 75 mM NaCl)
- Length 148 mm
- Diameter 190 mm
- J.M. Specialty Parts Inc

ACR MRI Phantom

 Must be capable of providing tests substantially equivalent to the ACR phantoms and after they have been approved by a QMP or MR scientist.

THE OHIO STATE UNIVERSITY

QMP Responsibilities

Commission testing

2015 Magnetic Resonance Imaging

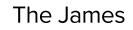
QUALITY CONTROL MANUAL

Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

QUALITY CONTROL MANUAL


Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

QMP Responsibilities

- Commission testing
- Annual testing
 - ACR, 12 months not to exceed 14 months
 - JC, 12 months not to exceed 13 months
- Repeat appropriate testing after major repair or upgrade

QUALITY CONTROL MANUAL

Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

QMP Responsibilities

- Commission testing
- Annual testing
 - ACR, 12 months not to exceed 14 months
 - JC, 12 months not to exceed 13 months
- Repeat appropriate testing after major repair or upgrade
- Establish Quality Control program
 - Baseline measurements and action limits
 - Establishment of new baseline values if needed after major repair
- Review QC records at least annually

QUALITY CONTROL MANUAL

Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

QMP Responsibilities

- Commission testing
- Annual testing
 - ACR, 12 months not to exceed 14 months
 - JC, 12 months not to exceed 13 months
- Repeat appropriate testing after major repair or upgrade
- Establish Quality Control program
 - Baseline measurements and action limits
 - Establishment of new baseline values if needed after major repair
- Review QC records at least annually
 - Assessment of MR safety program

QUALITY CONTROL MANUAL

Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

QMP Annual Tests

- Setup and table position accuracy
- Center frequency
- Transmitter gain or attenuation
- Geometric accuracy
- High-contrast spatial resolution
- Low-contrast detectability
- Artifact evaluation
- Film printer QC (if applicable)
- Visual checklist
- Magnetic field homogeneity
- Slice position and thickness accuracy
- Performance testing for coils used clinically
 - SNR
 - Percent image uniformity
 - Percent signal ghosting
- Soft-copy (monitor) QC

QUALITY CONTROL MANUAL

Radiologist's Section

MRI Technologist's Section

Medical Physicist/MRI Scientist's Section

MRI QC Technologist's Responsibilities

- Setup and table position accuracy
- Center frequency
- Transmitter gain or attenuation
- Geometric accuracy measurements
- High-contrast spatial resolution
- Low-contrast detectability
- Artifact evaluation
- Film printer QC (if applicable)
- Visual checklist

All Performed Weekly

Agenda

MR Siting Considerations

Imaging Quality Control

MR Simulation Specific QC

THE OHIO STATE UNIVERSITY

MR Simulation Specific Tests

<u>Daily</u>

27

Gantry lasers with center of image plane

WEXNER MEDICAL CENTER

MR Simulation Specific Tests

<u>Daily</u>

Gantry lasers with center of image plane

<u>Weekly</u>

- Gantry lasers with respect to imaging plane
- Lateral wall lasers with respect to gantry lasers and scan plane
- Wall lasers with respect to the imaging plane
- Ceiling laser with respect to the imaging plane
- Orientation of MR tabletop with respect to imaging plane
- Table vertical and longitudinal motion
 - RT tolerance is typically ±1mm while most manufacturer's specify ±2mm
- Table indexing and position
 - **Scan localization**

THE OHIO STATE UNIVERSITY

MR Simulator Acceptance Testing Results

310

1132

A5. LAP Laser

Geometry

LAP Laser to MR Laser:	
LAP Laser to MR Isocenter:	

Calibration

Calibration Accuracy

±4 mm

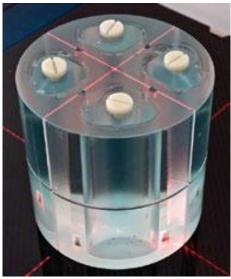
mm

mm

Pulse Sequence (High FA)

SPGR, FA 20°, 340mm FOV, 256x256, 5mm slice, 1 slice, 11 slices, TR/TE = 31/MIN ms, NEX 4, BW 250 kHz, Auto Shim.

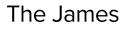
Image Quality


Laser	SNR	Ghosting Ratio
ON	174.6	0.03%
OFF	258.9	0.01%
Any Noticeable Imaging Artifact?	No	

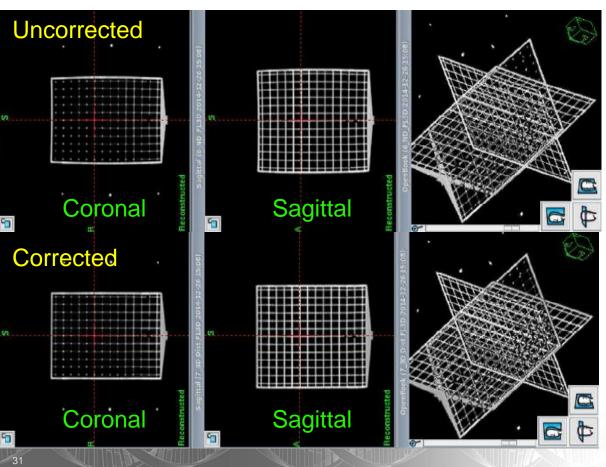
If yes, Type of Artifact:

No	
N/A	

Comment: The vendor LAP laser calibration phantom is not available. Calibration was done with Vitamin E capsules with ~9 mm diameter.



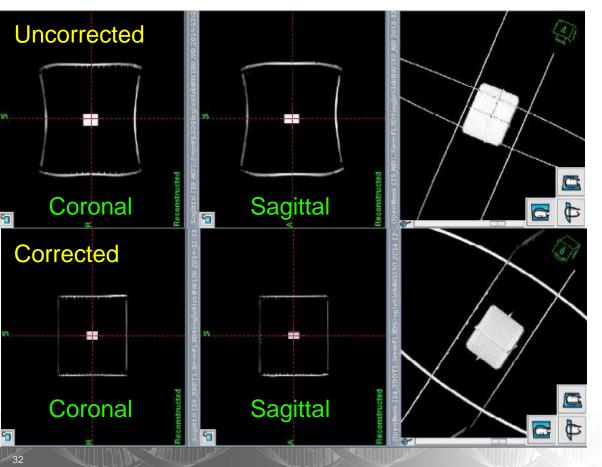
MR Distortion Analysis

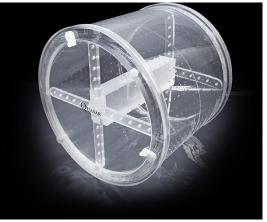

- Commercially available head phantom (body phantom prototype)
- Spatial resolution of 0.1 mm

Acquisition Technique

- 3D OEM gradient distortion correction is turned ON
- 3D T1 weighted sequence with 1 mm³ isotropic voxels (GE-FLASH, Philips-Fast Field Echo, Siemens-VIBE)
 - 2 NEX
 - TE ~ 4 ms
 - TR ~ 9 ms
 - Flip angle ~ 10°
 - Pixel BW ~ 120 Hz
 - Percent sampling 100%
 - Percent phase FOV 100%

MR Head Distortion Phantom Testing


- Dimension 14x13x11 cm³
- Spatial resolution 0.1 mm


Images courtesy of Lanchun Lu, PhD

The James

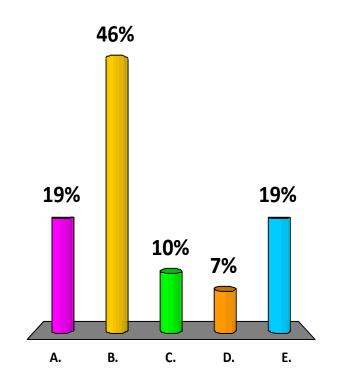
THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

MR Body Distortion Phantom Testing

- 37 cm diameter
- 32 cm length
- 1562 mineral oil points
- Spatial resolution <1 mm³ isotropic voxel

Images courtesy of Lanchun Lu, PhD The James

Future Considerations

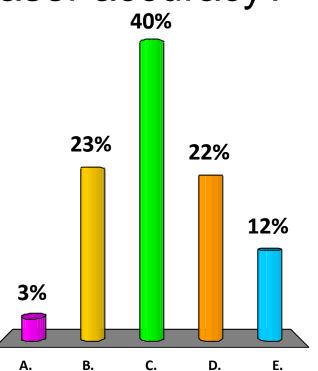

- New phantom design with improved tolerances
- Deformable co-registration
- Multi-modal fusion and co-registration

EXNER MEDICAL CENTER

Which of the following items is least likely to impact the performance of the MR system?

- A. C-arm in an adjacent room
- B. External lasers
- C. Forklift operated in area behind the MR
- D. Power injector
- E. Patient monitoring device within the MR room

Which of the following items is least likely to impact the performance of the MR system?


ANSWER: A C-arm in an adjacent room

The performance of the c-arm could be impacted by the MRI but the distance of the c-arm would be too great to cause any interference with the MR system

Reference: All OEM specification cut sheets. Example, https://ftp.siemensmedical.com/pp-cutsheets/mr/skyra/Cutsheet-10024.pdf

Based on the current technologies available for evaluation and equipment performance, what is the achievable MR laser accuracy?

- A. 4.0 mm
- B. 3.0 mm
- C. 2.0 mm
- D. 1.0 mm
- E. <1.0 mm

Based on the current technologies available for evaluation and equipment performance, what is the achievable MR laser accuracy?

Answer: C 2.0 mm

The manufacturer tolerance is 2.0 mm accuracy.

Reference: OEM equipment manuals, ECRI, MD Buyline

Additional References

- ACR website (<u>www.acr.org</u>)
 - MRI Accreditation Program Requirements
 - Breast MRI Accreditation Program Requirements
 - Phantom Test Guidance for the ACR MRI Accreditation Program
- ACR-AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance Imaging (MRI) Equipment
- AAPM Report No 100: Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities
- Kanal E, Barkovich AJ, Bell C, et al. <u>ACR guidance document on MR safe</u> <u>practices: 2013</u>. *Journal of Magnetic Resonance Imaging.* 2013; 37(3): 501-530.
- Gilk T, Kanal E. Interrelating sentinel event alert #38 with the ACR guidance document on MR safe practices: 2013. An MRI accreditation safety review tool. Journal of Magnetic Resonance Imaging. 2013; 37(3):531-543. The James

