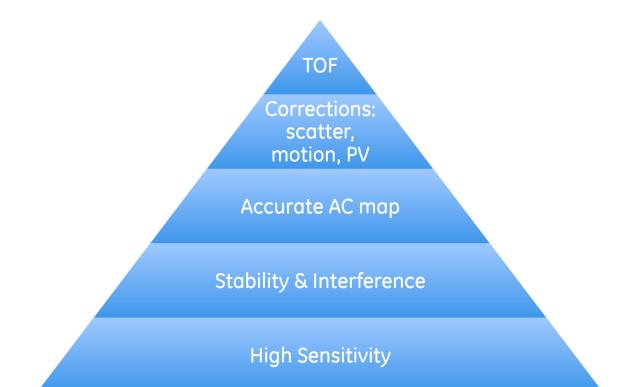

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI

Floris Jansen, GE Healthcare July, 2015



PET/MR 101 : challenges

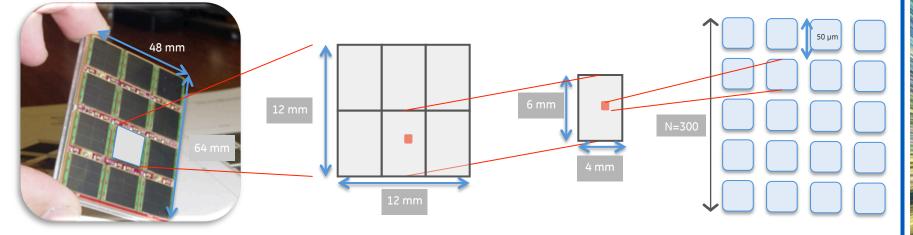
PET for PET/MR: optimizing for quantitation

PET detectors in PET/MR

Essential:

- Insensitive to magnetic fields
- Compact
- Excellent shielding (no interference)
- Stability (temperature)

Very useful:


- High sensitivity
- TOF capability

Solid State (Silicon) Photomultiplier

an array of arrays of arrays of microcells

✓ Small
✓ Fast
✓ Low voltage
✓ Works at 3T

Replaces PMT in PET detector: smaller size and better timing resolution

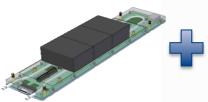
Changes required for MRI system

Space for PET detector

Minimize attenuation (coils, table)

Integrated software / workflow

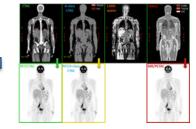
Pulse sequences to estimate attenuation "Whole body" paradigm: cradle motion



GE PET/MR Design Objectives

- MR750w 3T MRI Performance
- High Sensitivity (Low Dose) TOF PET
- Fully Integrated Simultaneous System
- Field Upgrade for MR750w

MR Compatible PET Detector



PET/MR Hardware Integration

Software / Workflow Integration

MR Based PET Attenuation Correction

Design elements that enable Time of Flight

- Fast, bright scintillator: LBS
- Fast, high PDE detector: SiPM
- High gain photosensor: SiPM
- Light collection efficiency: light guide
- Low noise electronics: ASIC
- Fast TDC: 13 ps LSB
- In-bore electronics
- Precise calibration
- Good stability/corrections

Design elements that enable high sensitivity

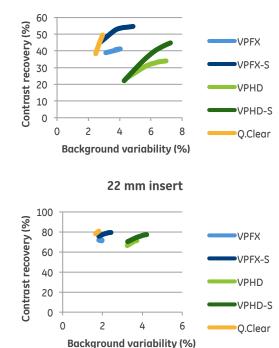
25 mm LBS

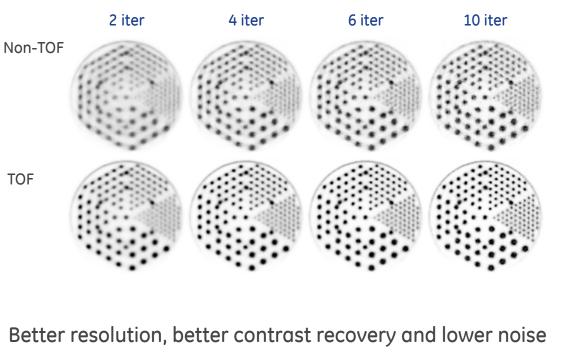
Integrated electronics Compton Scatter Recovery (+20%) 25 cm axial FOV 62 cm detector face to face

= 21 cps/kBq

The value of TOF in PET/MR

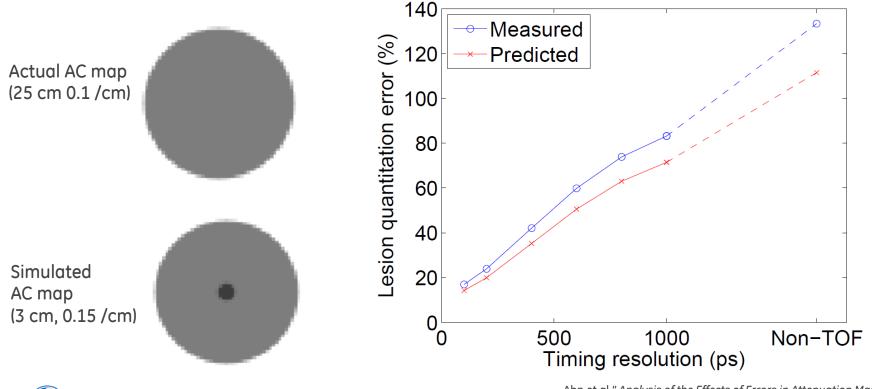
- Faster convergence
- Better CNR at equal count density
- Robust truncation completion
- Reduced sensitivity to attenuation map defects



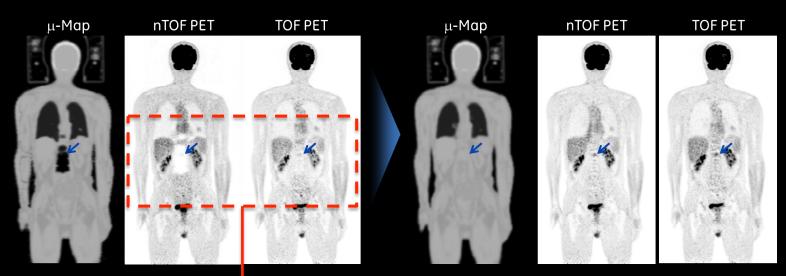

Impact of TOF - phantoms

NEMA phantom: CNR

Derenzo phantom: 5 slice sum (14 mm slab)


10 mm insert

Quantifying the importance of TOF for AC



(BE)

Ahn et al," Analysis of the Effects of Errors in Attenuation Maps on PET Quantitation in TOF PET", MIC 2014

Clinical example – MRAC Robustness

Initial Algorithm

Current Two Pass Algorithm)

TOF reduces sensitivity to MRAC segmentation errors

Stability and shielding

Stability:

- SiPM detector gain is sensitive to temperature
- Liquid cooling and ceramic heat sink insufficient
- Thermal compensation mechanism maintains stability across range of pulse sequences

Shielding:

• Optical communication, double shielded cables, differential signaling, choice of clock frequencies

Robustness to (mutual) interference

Key PET NEMA measurements barely affected by MR

MR specs unchanged from 750w:

	No MR	With MR
Energy resolution (FWHM)	10.3%	10.5%
Timing resolution (FWHM)	382 ps	393 ps
Peak NECR (kcps)	218	215
Sensitivity (kcps/MBq)	22.9	22.5
Spatial resolution	unchanged	
Data accurtacy. Craig Lawin, Stanford Linivaria		

Data courtesy Craig Levin, Stanford University

SNR unchanged/ better Transmit power increased Magnet uniformity / shim unchanged Gradients unchanged Narrower patient bore (70 cm \rightarrow 60 cm)

Attenuation correction

MRI good for contrast, but no direct determination of photon attenuation MRI cannot "see" bone very well

MRI FOV smaller than PET FOV \rightarrow need to estimate out-of-field mu map

- TOF PET can provide outline
- CT derived head atlas provides bone information
- TOF reconstruction less sensitive to AC map errors

TOF derived Joint Estimation may improve AC (bone, metal, lung) ZTE sequences may visualize bone

Attenuation correction challenges

- Density of lung
- Bone density
- Implants
- Motion
- Floating coils
- MR-invisible hardware

Looking to the future

Quantitative accuracy

• Solve remaining challenges for MRAC

Establish clinical relevance:

- Build evidence of clinical impact / advantages
- Cost / reimbursement
- Workflow / speed
- Technologist / radiologist dual certification
- Referrals / acceptance

