MRI homogeneity: Introduction and vendor-specific evaluation

Christina Brunnquell, PhD, DABR cbrunn@uw.edu

DEPARTMENT OF RADIOLOGY

Learning objectives

- Understand what B₀ homogeneity is, why it matters, and the challenges
 of this measurement
- Understand methods for measuring B₀ homogeneity
 - General and specific
- Identify resources for background and step-by-step instructions on homogeneity testing

What we'll cover

- Homogeneity OVERVIEW
- An introduction to the main METHODS of measuring B₀ homogeneity
- Step-by-step PROCEDURES for B₀ homogeneity measurement on different vendor platforms
- RESOURCES for more information about theory and implementation of different B₀ homogeneity testing methods

Contributors

Joe Och

Mike O'Shea

Dave Jordan

Trevor Andrews

Travis Salzillo

Sam Fielden

Dustin Ragan

Chad Dillon

Mike Tressler

Kathryn Huff

Jessica Saunders

TG325 MRI Resources website accessible to AAPM members: https://w3.aapm.org/pubs/MRIResources/

B_0 inhomogeneity (ΔB_0)

Measure of static magnetic field strength uniformity

- Influenced by
 - Magnet design & manufacturing
 - External ferromagnetic structures
 - Shim compensation
 - > Phantom or patient in magnet

Influences

- Chemical shift techniques: fat suppression (SPIR, SPAIR)
- Spectroscopy techniques
- Geometric distortion
- Signal uniformity
- Banding artifacts

For diagnostic physicists...

 Annual evaluation of B₀ homogeneity required by The Joint Commission and for American College of Radiology (ACR) accreditation.

Challenge:

- Vendor phantoms, software tools, access level
- Vendor accepted methods and tolerance levels
- Quick on-site evaluation

For therapy physicists...

- Contributes to geometric distortion, especially near edges of FOV
- Extensive and frequent QA procedures
- \rightarrow need quick, easy, meaningful B₀ homogeneity evaluation approach

Further considerations

- How to choose a method
 - Accessibility
 - Compatibility with vendor action limits
 - Output characteristics: 1D vs. 2D vs. 3D
 - Quick results at workstation
- How to establish tolerances

GE	Availability and accessibility	Immediately actionable by vendor	Provides spatial information	Quick results at workstation
Spectral peak	+	-	-	+
Phase difference	-	-	+	+
Field mapping	+	+	∼ (multiple DSVs)	+
Bandwidth difference	+	-	-	+

B_0 inhomogeneity (ΔB_0)

- Measure of static magnetic field strength uniformity
 - Variation over a specified volume (DSV)
 - > Expressed in ppm or Hz
 - RMS measurement of B₀ inhomogeneity is volume-averaged
 - Peak-to-peak requires a spatial measurement of variations

Spectral peak

<u>Notes</u>

- + quick and simple
- no spatial information
- Global measure: $B_{0,rms}$ only, not $B_{0,pp}$
- DSV determined by phantom

$$\Delta B_{0,rms}\left(ppm\right) = \frac{FWHM\left(Hz\right)}{\gamma\left(\frac{MHz}{T}\right) \times B_{0}(T)}$$

$$\gamma = 42.56 \, MHz/T$$

Phase difference & phase map

Ridgway JP. J Cardivasc Magn Reson 2010. 12(1):71.

$$\Delta \varphi_{pp} = \frac{ROI_{max} - ROI_{min}}{DR_{ADC}} \qquad \Delta \varphi_{rms} = \frac{\sqrt{ROI_{mean}^2 + ROI_{stdev}^2}}{DR_{ADC}}$$

$$\Delta B_0 (ppm) = \frac{\Delta \varphi}{\gamma B_0 \times \Delta TE}$$

Phase difference & phase map

Notes

- + can perform in 3D (or 3 orthogonal planes)
- + includes spatial information
- phase image accessibility

METHODS

- phase wraps
- analysis on scanner can be difficult
- $B_{0,rms}$ or $B_{0,pp}$
- DSV determined by ROI (user-selectable within phantom)
- A single phase map can also be used to estimate upper bound of ΔB_0

ACR 2015 MRI Quality Control Manual

Field map

- If available, this is a straightforward vendor-provided capability
- 3D map acquired or created from 2D maps
- Comparable results to phase difference mapping

Field Term	Value			
	Value	Min	Max	Unit
Врр	1.600	0.000	3.000	ppm
Brms	0.090	0.000	0.400	ppm
A10	-0.011	-0.700	0.700	ppm
A11	-0.044	-0.700	0.700	ppm
B11	0.047	-0.700	0.700	ppm
A20	0.080	-0.700	0.700	ppm
A21	0.039	-0.700	0.700	ppm
B21	0.073	-0.700	0.700	ppm
A22	0.044	-0.700	0.700	ppm
B22	0.019	-0.700	0.700	ppm

Bandwidth difference

ACR 2015 MRI Quality Control Manual

$$\Delta B_o (ppm) = \frac{BW_1 \times BW_2 \times (x_1 - x_2)}{\gamma B_0 \times FOV \times (BW_2 - BW_2)}$$
(BW in Hz)

Notes

- + accessible on all platforms
- many acquisitions & measurements for 3D evaluation
- assumes proper gradient calibration
- DSV determined by phantom or internal markers

Procedures by vendor

- Step-by-step instructions/button-ology
- Variation by software version, but this should provide a solid starting point
- Talk to vendor field engineer if you need guidance on your specific system

GE: LV shim procedure

- Accessible field map function: Large Volume (LV) shim
- Phantom: 45 cm diameter LV shim phantom*
- Coil: body coil

Service Desktop Manage

Gating, Fan, Light

Calibration → Calibration tools → LV shim

- →"Click here to start this tool"
- →Test
- →Scan

*no matter the phantom or procedure, let it rest a few minutes so fluid can settle

GE: LV shim results

GE: Other options

Spectral peak in manual pre-scan

Bandwidth difference

Phase difference

CV rhrcctrl = 3 for magnitude and phase (31 for magnitude, phase, real, imaginary)

GE: Comparing methods

GE	Availability and accessibility	Immediately actionable by vendor	Provides spatial information	Quick results at workstation
Spectral peak	+	-	-	+
Phase difference	-	-	+	+
Field mapping	+	+	∼ (multiple DSVs)	+
Bandwidth difference	+	-	-	+

Siemens: Phantom shim check procedure

- Accessible field map function: Phantom shim check
 - Requires a service password which is typically easily obtained
- Phantom: 24 cm homogenous sphere
- Coil: Body

→Hit "Go"

Siemens: Phantom shim check results

Siemens: Other options

BW difference is generally accessible

$$\Delta B_o (ppm) = \frac{BW_1 \times BW_2 \times (x_1 - x_2)}{\gamma \times B_0 \times FOV \times (BW_2 - BW_2)}$$

BW in Hz – multiply Hz/pixel by number of pixels in FE direction

Spectral peak (newer systems)

- After localizer, while setting up another protocol, System→Adjustments→Confirm frequency adjustment
- After pre-scan begins, spectrum displayed
- FWHM displayed or estimate by moving vertical line

Siemens: Comparing methods

Siemens	Availability and accessibility	Immediately actionable by vendor	Provides spatial information	Quick results at workstation
Spectral peak	+	-	-	+
Phase difference	+	-	+	+
Phantom shim check	+	+	-	+
Bandwidth difference	+	-	-	+

Philips: Shim check procedure

- Accessible field map function: Shim check
- Phantom: 40 cm disk
- Coil: Body

Phantom studies → MISC

Run as is. Example 1.5T parameters below			
Sequence	FFE		
TR	400 ms		
TE	16 ms		
FA	30°		
FOV	45 cm		

Philips: Shim check results

- Each B→W transition is 1.0ppm. (1 full cycle is 1.0 ppm)
- Count number N of B \rightarrow W transitions, $\Delta B_{0,pp} = N \times 1.0ppm$
- Re-position phantom and run in 3 planes

PROCEDURES BY VENDOR

Philips: Other options

Spectral peak

After running non-survey scan Examination → Data Monitoring → F0→Show Latest Zoom in on half of Y Maximum to estimate FWHM.

BW difference

- Older systems display fat-water shift in pixels instead of bandwidth/pixel
- Calculate Hz/pixel:

$$\frac{Hz}{pixel} = \frac{3.5ppm \times \gamma(\frac{MHz}{T}) \times B_0(T)}{fat - water shift (pix)}$$

Phase difference map

- Phase images can be reconstructed also by selecting M (magnitude) and P (phase) on Postproc→Images on the exam card.
- Use image algebra in viewing environment to subtract
- If necessary, reduce TE difference to reduce phase wraps

Field mapping

RESOURCES

SPT tools can be used with a service dongle

Philips: Comparing methods

Siemens	Availability and accessibility	Immediately actionable by vendor	Provides spatial information	Quick results at workstation
Spectral peak	+	-	-	+
Phase difference	+	-	+	+
Shim check	+	+	-	+
Field mapping	-	+	+	+
Bandwidth difference	+	-	-	+

Toshiba/Canon: Phase difference procedure

- Phantom: 30 cm spherical
- Coil: Body
- Protocol: FE_AAS

Run in axial plane

Image selector window

Toshiba/Canon: Phase difference results

- Repeat in sagittal and coronal planes
- Field homogeneity (within DSV = ROI diameter) is the absolute max pixel value found in the ROI in any plane
- Absolute pixel value of 100 corresponds to 1 ppm

Hitachi: Fine magnetic field analysis set-up

- Oasis & Echelon
- Phantom: Bottle 11
- Coil: RAPID body (Oasis) or T/R Body (Echelon)
- Protocol: Fine magnetic field analysis tool

RAPID body coil, laterally centered, no pads (required for valid results)

Align laser with phantom landmarks, not coil

Hitachi: Fine magnetic field analysis results

- Hitachi recommends service call if >1.0ppm for Shim On and >5.0 ppm for Shim Off
- ROI placement is automatic – very sensitive to lateral positioning!

Hitachi: SHIM procedure

- AIRIS, Altaire
- Phantom: #4 bottle (AIRIS) or D bottle (Altaire)
- Coil: Head

Axial: TR= 1850, Multi Slice=15, Presat=0, W=11, L=500, Prescan=ON Sagittal: TR= 2430, Multi Slice=15, Presat=4, W=11, L=500, Prescan=ON TR= 2430, Multi Slice=15, Presat=4, W=11, L=500, Prescan=ON

SNR analysis card – place measurement ROIs and record Max and Min for each slice

Slice	Slice position	ROI diameter
Number	(mm)	(mm)
1	-70	110
2	-60	134
3	-50	150
4	-40	160
5	-30	170
6	-20	175
7	-10	178
8	0	180
9	10	178
10	20	175
11	30	170
12	40	160
13	50	150
14	60	134
15	70	110

Calculate $\Delta B_{0,pp}$ for each slice:

Airis 2: $\Delta B_0 = 0.114 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$ Airis Elite: $\Delta B_0 = 0.104 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$ Altaire: $\Delta B_0 = 0.068 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$

Determine largest $\Delta B_{0,pp}$ value among all slices from each of three planes and compare to specifications:

 $\begin{array}{ll} \mbox{Airis 2:} & \Delta B_0 \leq 1.5 \mbox{ ppm} \\ \mbox{Airis Elite:} & \Delta B_0 \leq 1.5 \mbox{ ppm} \\ \mbox{Altaire:} & \Delta B_0 \leq 1.75 \mbox{ ppm} \end{array}$

Fonar: Field map procedure

- Accessible field map function
- Phantom: 19 cm soccer ball!
- Coil: 45 inch torso belt coil

Run these in order

Fonar: Field map results

- Echo spacing such that phase wraps are 1.0ppm apart
- Center of volume always scaled to middle of greyscale range

RESOURCES

Toshiba, Hitachi, Fonar

Vendor	Method	Availability and accessibility	Immediately actionable by vendor	Provides spatial information	Quick results at workstation
Toshiba	Phase difference	+	+	~	+
Hitachi (Oasis, Echelon)	Fine magnetic field analysis	+	+	~	+
Hitachi (AIRIS, Altaire)	SHIM	+	+	-	+
Fonar	Field map	+	+	+	+

Typical values

Gathered from past annual & acceptance tests from TG325 members

Test method and phantom size	Mean of archived data (ppm)	SD of archived data (ppm)
Spectral peak (<30cm)	0.62 (RMS)	0.36
Spectral peak (≥30cm)	1.07 (RMS)	0.69
Phase difference	1.53 (PP)	0.65
Field map	1.45 (PP)	0.63
Bandwidth difference	1.26 (PP)	1.01

More Resources: AAPM Report 100

- Details sources and impacts of poor homogeneity
- Overview of 3 measurement methods
- Advantages and disadvantages of each
- Suggested acceptance criteria for routine and ultrafast imaging

https://www.aapm.org/pubs/reports/RPT_100.pdf

RESOURCES

More Resources: ACR MRI QC Manual

- ACR-specific requirements for B₀ testing
- General theory behind homogeneity testing
- Detailed vendor agnostic descriptions of 4 measurement methods
- Suggested corrective action

https://www.acr.org/-/media/ACR/NOINDEX/QC-Manuals/MR_QCManual.pdf

RESOURCES

More Resources

 Bandwidth difference method: Chen HH, Boykin RD, Clarke GD, Gao JHT, Roby JW. Routine testing of magnetic field homogeneity on

RESOURCES

clinical MRI systems. *Med Phys* 2006 33(11)

Routine testing of magnetic field homogeneity on clinical MRI systems

Hua-Hsuan Chen, Rex D. Boykin, and Geoffrey D. Clarke^{a)}
Department of Radiology, The University of Texas Health Science Center at San Antonio,
San Antonio, Texas 78284

Jia-Hong T. Gao^{b)} and John W. Roby III
Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78284

(Received 28 March 2006; revised 21 July 2006; accepted for publication 11 September 2006; published 23 October 2006)

More Resources

MRI Resources website accessible to AAPM members: https://w3.aapm.org/pubs/MRIResources/

Part 1: Motivation & introduction to B0 homogeneity measurement methods

Part 2: Step-by-step homogeneity measurement methods – multiple methods on multiple vendors

Part 3: Typical homogeneity values based on historical results from TG325 members (community contribution encouraged)

RESOURCES