INTEGRITY MODULATION OF ELECTRON FLASH IS ACHIEVABLE AND IMPROVES HOMOGENEITY OF PRESCRIBED DOSE WITH PROPER TREATMENT CONSTRAINTS WHILE REDUCING HOT SPOTS FOR CLINICAL PLANS.

METHODS

- Develop Electron Beam model in decimal ElectronRT treatment planning system
- Compare intensity modulated vs unmodulated plans for:
 - Water Phantom
 - Facial Orbital
 - Rib Metastasis

MODEL VALIDATION

![Graphs and images showing comparison of modulated and unmodulated plans for different anatomical regions.]

Hypothetical equation for conformity and homogeneity indices:

\[
CI = \frac{V_{\text{PTV}}}{V_{\text{PTV}}} \times \frac{V_{\text{PTV}}}{V_{\text{PTV}}}
\]

\[
HI = \frac{\text{Mean Dose of PTV}}{D_{\text{Ref}}}
\]

CONCLUSION

- Intensity modulation can maintain UHDR beams with conformal electron beams.
- Treatment constraints instrumental to achieving superior homogeneity and conformity.
- Requires dose validation with intensity modulating applicators.

ACKNOWLEDGEMENTS

This work was supported by the Norris Cotton Cancer Center seed funding through core grant P30 CA023108 and through seed funding from the Thayer School of Engineering, as well as support from grant R01 EB024498.