Enhancing a Physicist's Role in the Assessment of Treatment Plan Quality

Disclosures

Learning Objectives

- To define quality in radiotherapy treatment planning
- To understand the role of a physicist in determining quality
- To learn how to evaluate technical features than affect plan quality
- To learn how to evaluate clinical features than affect plan quality
- To understand how automation and data-drive plan quality control tools can be used clinically to support quality

Learning Objectives

- To define quality in radiotherapy treatment planning
- To understand the role of a physicist in determining quality
- To learn how to technical features than affect plan quality
- To learn how to clinical features than affect plan quality
- To understand how automation and data-drive plan quality control tools can be used clinically to support quality

Definition of quality

Quality (Merriam Webster):

"How good or bad something is."

Plan quality (TG-308):

"Given a desired therapeutic dose of radiation to a patient, treatment plan quality is the degree to which a dose distribution maximizes tumor control and minimizes normal tissue injury for a given technique."

Features impacting plan quality

Clinical aspects:

- Patient specific target/OAR relationship
- Contour accuracy
- Balance of target coverage and normal tissue sparing
- Patient's physical limitations

Technical aspects:

- Patient setup and immobilization
- Motion management
- Treatment planning scan quality
- Treatment technique
- Optimization

Stoplight approach to plan quality

Unacceptable: Plan is unsafe for treatment

Acceptable: Plan will not harm patient, but could be improved

High Quality: Plan strikes a balance between target coverage, normal tissue sparing, robustness, and clinical practicality

Spectrum of Plan Quality

SAM Question #1

- Plan quality:
- a) Maximizes tumor control
- b) Minimizes normal tissue injury
- c) Depends on treatment technique
- d) All of the above

Reference: TG-308 – not sure if we can use this yet?

Learning Objectives

- To define quality in radiotherapy treatment planning
- To understand the role of a physicist in determining quality
- To learn how to technical features than affect plan quality
- To learn how to clinical features than affect plan quality
- To understand how automation and data-drive plan quality control tools can be used clinically to support quality

Role of a Physicist in Radiation Oncology

"The first responsibility of the radiation oncology physicist is to the **patient**--to assure the **best possible** treatment given the state of technology and the skills of the other members of the radiation oncology department." – Task Group 38

Create a culture that promotes quality

- 1. Multi-disciplinary, collaborative approach to achieve the best plan possible for a given patient
 - Discuss quality early in the planning process to receive feedback from all team members
- 2. Review plans as a physicist with a critical eye
 - Is the dose distribution optimal for this patient?
 - Could technical aspects/robustness of the plan be improved?
 - Is the plan clinically practical?
- 3. Implement automation and data-driven methods to support quality

Potential hurdles to a culture that promotes quality

Learning Objectives

- To define quality in radiotherapy treatment planning
- To understand the role of a physicist in determining quality
- To learn how to technical features than affect plan quality
- To learn how to clinical features than affect plan quality
- To understand how automation and data-drive plan quality control tools can be used clinically to support quality

Overview

- Slide on goals for this section
 - Provide a high level review of many parameters physicists should consider
 - Relavent examples provided
 - Not comprehensive
 - Discuss that a plan quality check is often most beneficial prior to physician review and plan write up.

- Number of arcs
 - Too few:
 - Reduced degrees of freedom necessary for maximum OAR sparing/target coverage
 - Too many:
 - Decreased delivery efficiency, slow dose rate (arcs)
 - Often standardized
 - Depends on institution, treatment site, complexity
 - For arc treatments,
- Example (keep as comment) (Eric)
 - Simple vs. complex
 - Patient specific parameters can dictate
 - Institutional/individual practice can guide

- Arc/Field Angles (Dustin)
 - Preferential path to target while minimizing in-field OARs
 - Example: CW VMAT
 - Example: Prostate Static Field utilizing lateral fields
 - Clearance of patient
 - Both for field path AND between fields/arc
 - Minimize shifting of patient
 - Example: posterior field from contralateral side

- Arc/Field Angles (Minsun)
 - Maximize target coverage from multiple angles
 - Example: Not covering all aspects of target causing dose streaking
 - Minimize entry through critical OARs with low dose objectives
 - Avoid entry through poorly reproducible anatomy
 - Example: Shoulder reproducibility for HN patients impacting dose to target and cord.

- Collimator Angles (James)
 - Utilize collimator angles to minimize in-field OARs
 - Example: Breast/CW VMAT plans
 - Varying collimator angles for multiple arcs to increase degrees of freedom
 - No zero collimator angle for VMAT
 - Example: Zebra stripe leakage effect (maybe more impactful for older linacs)
 - Orientation of MLCs relative to targets
 - Example: Concave targets
 - Example: Multi-met targets with single isocenter

- Field Size Selection (Joey)
 - For large targets
 - Carriage splits vs. broad field optimization
 - Maximize critical OARs with low dose objectives under the jaws
 - Limited jaw size and MLC travel
 - Examples:

- No one correct way to optimize (James, Dustin)
 - Objective weighting variability,
 - Utilization of point vs global objectives
 - Differences in planning systems
- Review of optimization objectives used still beneficial
 - Achievable objectives
 - Conflicting objectives
 - Omitted OARs/Targets
 - General objective weight strategy
- Example from optimizer of two different optimization strategies for same treatment site?

- Achievable Objectives (James, Dustin)
 - All targets have lower objectives
 - Upper objectives above lower objectives by sufficient amount
 - Lower objectives exist only on target volumes
- Example from optimizer for IMRT and SBRT
 - Describe these are strategies for exploring for issues
 - Tips for troubleshooting
 - Use a Unacceptable plan as an example, then go into opt strat
- OAR/target objectives omitted from optimization

- Conflicting Objectives (Dustin, James)
 - OAR/Target objectives not simultaneously achievable
 - Optimizer may prioritize these conflicting objectives, minimizing sparing of other OARs
 - Maybe visible through general review of objectives or impact of each objective on the optimization
 - Solutions:
 - Physician provided ranking for objectives
 - Creation of optimization structures that exclude overlap region
- Example: Min dose to target lower than max dose to OARs in optimizer
- Example: Weight within optimizer for above example prioritizing these two structures

- Objective weighting review (Mu-Han)
 - General weighting on objectives should follow target/OAR prioritization
 - Should be reasonable relative to build-in parameters
- Example: Show prioritization list and OAR optimization weight
- Example: Show smoothing weighting values in Eclipse

Technical Review — Plan Modulation

- Heavily modulated plans may exceed accuracy of dose calculation models
 - Resulting QA rates may start to decrease
 - Best to evaluate and mitigate prior to plan approval/write-up/QA
- Plan complexity evaluation includes
 - MU/modulation ratios within expected ranges (planning modality and treatment site)
 - MLC aperature size and motion within BEV
 - Complexity factors when available
- Examples: MU Ratio ranges for standard plan vs. complex plan?

Technical Review – Density Overrides

- Treatment Couch (Carlos, Jose)
 - Correct couch, position, type and density
 - Dosimetric Impact of couch Need paper, likely good SAM questions
- Examples: Visual impact of couch added vs. not added

Technical Review – Density Overrides

- Artifact/Contrast overrides (Carlos, Mu-Han)
 - Not physically present during treatment
 - Location, volume, proximity to target all dictate when it is important
 - No universal standards
- Examples: High density artifacts in/near target
- Examples: Contrast override in/near target.

Learning Objectives

- To define quality in radiotherapy treatment planning
- To understand the role of a physicist in determining quality
- To learn how to technical features than affect plan quality
- To learn how to clinical features than affect plan quality
- To understand how automation and data-drive plan quality control tools can be used clinically to support quality

Clinical Review - Images

- Appropriate primary dataset
 - AIP for lung,
 - Sub-average/MIP for gated
 - Originates from scanner with characterized electron density tables
 - Example: Full average used for gated lung?

Clinical Review - Registrations

- Evaluate primary to secondary dataset registrations (Carlos)
 - Rigid and deformable registrations reviewed.
 - Positioning of patient in secondary dataset may be different
 - Accuracy of registration may be limited to small region, impacting target/OAR delineation
 - Communicate any unusual variations to physician.
 - Examples: MRI image distortion
 - Example: Motion of tumor in 4DCT relative to delineated target volume

Clinical Review — Contours

- Accuracy of contours impacts plan trade-offs and quality evaluation
 - Missing contours
 - Incomplete contours (impact volumetric DVH planning)
 - Incorrect labeling of contours

Clinical Review – Contours

- Accuracy of contours impacts plan trade-offs and quality evaluation
 - Missing contours
 - Incomplete contours (impact volumetric DVH planning)
 - Incorrect labeling of contours

Clinical Review — Isodose

- Review plans for poor quality (needs revision) vs. sub-optimial differences.
- Prescription conformity to target (Poor Quality Examples)
 - Example: Ditzels or optimization structures driving dose to unintended volumes
 - Example: Appropriate prescription dose to each target

Clinical Review — Isodose

- Reviewing isodoses for unusual/unexpected dose distribution
- Medium-to-High dose streaking (Sub-optimal)
 - Example: OARs dominating optimization

Clinical Review — Isodose

- Maximum plan dose (Hot-Spot)
 - Location within high dose target
 - Minimize overlap with abutting OARs
 - Understand magnitude and location of hot spots
 - Examples: Head and Neck dose spilling
 - Examples: adjacent to heart for breast plans

Clinical Review – Isodose

- Dose Gradients vs. Hot Spot trade-off:
 - SRS example from Group 3

Clinical Review - DVH

- Understand national and institutional normal tissues goals
 - Ideally prioritized from MD written directive on a per-patient basis
 - Example: Written directive image with objectives ranked
- Appropriate prioritization of planning goals
 - OAR constraints > target coverage > OAR goals
 - TG-101/HyTex for SBRT
 - Quantec/Clniical trials for specific treatment sites
- During review, dose to higher ranked OARs/targets drives trade-offs
 - Example

Clinical Review - DVH

- Discuss sub-optimal plan that doesn't maximize OAR objective sparing
 - When constraints and target coverage achieved, continue to minimize dose to lower ranked OARs.
 - Group 3 Parotid sparing example

Clinical Review – Plan Sum Evaluation

EQD2 when comparing different fractionation scheme treated to a patient