

Adaptive Radiation Therapy

- Adaptation to anatomical change
- Increased therapeutic dose for non-responders, or reduced dose for early responders
- Risk adaptation for treatment (de-)intensification
- Reduce or eliminate dose to low-risk targets
- Increased therapeutic dose for non-responders, or reduced dose for early responders
- Additional systemic therapy for patients at high-risk for distant metastasis

Radiation Oncology

AIRT and MAIA Labs

ЛSouthwesterr

Biomarkers for risk stratification in head and neck cancer

- Human papillomaviruses (HPV) type 16 associated oropharyngeal cancers
- Markedly improved survival
- Imaging-based markers
- Pre-treatment PET has prognostic values
- SUV of the primary tumor was associated with disease-free survival (DFS), OS and local control
- Often based on a single measurement, e.g., SUVmax or SUVmean

Economopoulou, Panagiota, et al. "Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting." *Frontiers in oncology* 9 (2019): 827.

Radiation Oncology

AIRT and MAIA Labs

ЛSouthwestern

Al or Machine Learning

- Analyze/model complex data
- Integrate information from different sources
- -Imaging (radiological/pathological)
- -Clinical
- -Biology
- Complex patterns
- -Texture of images

Radiation Oncology

AIRT and MAIA Labs

TSouthwestern

Radiomics-based Modeling

- ☐ Explosion of radiomics studies over last decade
 - > Imaging-based predictive models
 - > Extraction and analysis of large amount of features from medical images
 - Building predictive models from extracted imaging features, often in combination with other features such as clinical characteristics

Radiation Oncology

AIRT and MAIA Labs

Southwestern
Medical Center

Head and Neck Outcome Prediction

- Toxicity
 - Carbonara et al. Investigation of Radiation-Induced Toxicity in Head and Neck Cancer Patients through Radiomics and Machine Learning: A Systematic Review, J Oncol. 2021
- Treatment failure: distant metastasis, local regional failure
 - Vallieres et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017
- Survival
 - Starke, Sebastian, et al. "A hybrid radiomics approach to modeling progressionfree survival in head and neck cancers." 3D Head and Neck Tumor Segmentation in PET/CT Challenge. Springer, Cham, 2021.

Radiation Oncology

AIRT and MAIA Labs

UTSouthwestern

How to choose a classifier?

- N/\/2
- Logistic Regression
- Decision Tree
- Discriminant Analysis
- K-Nearest Neighbors
- Naïve Bayesian
- Random forest
- CNN...

Model performance strongly depends on data: different runs on different training, validation, test set splittings may result different preferred classifiers

Radiation Oncology

AIRT and MAIA Labs

Southwester

Multi-Classifier Multi-Objective and Multi-Modality (mCOM)

- Explicitly considers both sensitivity and specificity, critical for imbalanced dataset.
- Instead of choosing a specific classifier, we aim to maximally utilize information extracted by different classifiers.
- Lead to more robust prediction results.

R. Wang, ..., and **J. Wang**, Locoregional Recurrence Prediction in Head & Neck Cancer Based on Multi-modality and Multi-view Feature Expansion, *PMB*, 2022

Z. Zhou,..., J. Wang, Multifaceted radiomics for distant metastasis prediction in head & neck cancer, PMB, 2020

L. Chen, ..., J. Wang, Combining Many-objective Radiomics and 3-dimensional Convolutional Neural Network through Evidential Reasoning to Predict Lymph Node Metastasis in Head and Neck Cancer, PMB, 2019 (<u>Used in two prospective Phase II clinical trials</u>)

K. Wang, ..., J. Wang, A multi-objective radiomics model for the prediction of locoregional

K. Wang, ..., J. Wang, A multi-objective radiomics model for the prediction of locoregional recurrence in head and neck squamous cell cancers, Medical Physics, 2020

diation Oncology

AIRT and MAIA Labs

UTSouthwestern

Reliable fusion Classifier 2 Classifier 2 Classifier 2 Classifier 2 Classifier 2 Classifier 2 Classifier 3 Classifier 4 Classifier 4 Classifier 4 Classifier 4 Classifier 5 Classifier 5 Classifier 4 Classifier 4 Classifier 4

- 277 patients from 4 institutions, a public H&N dataset downloaded from TCIA
- 40 experienced locoregional recurrence
- Median follow-up: 43 months
- Median time to locoregional recurrence: 18 months
- Model trained on data from two institutions while tested on other two institutions.

Vallieres M, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep, 2017.

Radiation Oncolog

AIRT and MAIA Labs

Southwestern Medical Center

Performance of models built with different classifiers and features from different modalities

Modality	Classifier	Sensitivity	Specificity	Accuracy	AUC	P-value
Clinic	SVM	0.60 ± 0.20	0.67 ± 0.22	0.66 ± 0.16	0.66 ± 0.06	0.51
	LR	0.65 ± 0.07	0.63 ± 0.06	0.63 ± 0.04	0.68 ± 0.02	0.98
	DA	0.62 ± 0.08	0.63 ± 0.05	0.63 ± 0.04	0.67 ± 0.01	0.52
	MC	0.63 ± 0.06	0.65 ± 0.06	0.64 ± 0.06	0.68 ± 0.02	-
СТ	SVM	0.52 ± 0.06	0.82 ± 0.08	0.78 ± 0.06	0.66 ± 0.01	0.89
	LR	0.52 ± 0.03	0.84 ± 0.01	0.79 ± 0.01	0.67 ± 0.02	0.59
	DA	0.54 ± 0.00	0.81 ± 0.02	0.77 ± 0.02	0.67 ± 0.01	0.87
	MC	0.54 ± 0.00	0.84 ± 0.02	0.80 ± 0.01	0.69 ± 0.02	-
PET	SVM	0.62 ± 0.09	0.49 ± 0.04	0.51 ± 0.02	0.52 ± 0.01	< 0.01
	LR	0.59 ± 0.09	0.50 ± 0.04	0.51 ± 0.03	0.53 ± 0.01	0.02
	DA	0.58 ± 0.14	0.61 ± 0.03	0.61 ± 0.02	0.59 ± 0.03	0.26
	MC	0.62 ± 0.12	0.61 ± 0.03	0.61 ± 0.01	0.62 ± 0.03	-

A, discriminant analysis, I.R, logistic regression; MC, multi-classifier model; SVM, The classifiers comprise support vector machine.

(K. Wang, ..., J. Wang, A multi-objective radiomics model for the prediction of locoregional recurrence in head and neck squamous cell cancers, *Med. Phys.* 2020)

Radiation Oncology

RT and MAIA Labs

UTSouthwester

Intra-treatment CBCT Daily/weekly CBCT is routinely used for patient setup or adaptive therapy Change of CBCT-based radiomics (delta-CBCT-radiomics) could reflect the therapy included response Adding delta-CBCT-radiomic may improve the performance of models based on baseline imaging/clinical characteristics Cohort: 1:2 case-control cohort of patients with HNSCC treated at UTSW with definitive radiotherapy +/- chemotherapy. 90 patients (30 cases) were included with: 89 primary GTVs (23 primaries with LF) 209 nodal GTVs (15 nodes with LF) TSouthwestern Medical Center

Prediction uncertainty?

- Patients are often limited
- Model may not provide reliable predictions to all the testing samples, especially for those whose characteristics vary significantly from the training dataset distribution
- Epistemic uncertainty
- Can be estimated by anomaly scores
- Inherent noise of input data
- Aleatoric Uncertainty
- Can be estimated by using test-time augmentation (TTA)

Radiation Oncology AIRT and MAIA Labs UTSouthw

Personalized treatment target identification

- Involved nodal radiation therapy for head and neck cancer (HNC) patients
- Majority of disease sites treated with RT no longer receive elective/prophylactic radiotherapy to clinically-negative
- Despite our ability to tailor the radiotherapy volume and dose to specific areas, IMRT still targets the same lymph node regions as conventional 2D radiotherapy in HNC
- The toxicity of associated with RT is very high, especially for patients receiving chemoradiation therapy, where acute and late toxicity rates of grade 3 or higher are 80% and 25%-60%, respectively

Radiation Oncology AIRT and MAIA Labs UTSouthwestern

Cervical Lymph Node Malignancy Prediction

- There is often uncertainty about the malignant potential of small and less FDG avid lymph nodes (LNs) in head and neck cancer.
- Malignant LN identification strongly depends on the physicians' experience.
- Al-based clinical decision support tool for physicians to identify malignant LNs more consistently.

ation Oncology AIRT and MAIA

UTSouthwestern Medical Center

Model deployment for a phase II trial

- INRT- AIR: A Prospective Phase II Study of Involved Nodal Radiation Therapy Using Artificial Intelligence-Based Radiomics for Head and Neck Squamous Cell Carcinoma (PI: David Sher).
- https://clinicaltrials.gov/ct2/show/NCT03953976
- Eliminating elective neck irradiation and strictly treating involved and suspicious lymph nodes

Radiation Oncology AIRT and MAIA Labs UTSouthwestern Medical Center

Preliminary results of INRT-AIR trial

- With a median follow-up of surviving patients of 19.6 months, there were no solitary regional recurrences.
- The mean composite MDADI scores at 6 and 12 months were 90.7 and 89.8, respectively and 94.9 and 94.6 at 6 and 12 months with a baseline MDADI score > 75.
- These outcomes are much higher than a cohort of patients treated with <u>standard IMRT with elective neck irradiation</u> from a prospective cohort at Royal Marsden, where <u>mean MDADI</u> composite score 12 months after treatment completion was <u>72</u>.

adiation Oncology D. Sher et al. ASTRO 2021

UTSouthwestern

