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Non-Small Cell Lung Cancer 

► Survival rates remain quite 
poor despite advances in 
diagnosis and treatment.

► 5-year survival rates:
> Stage I: 55-75%
> Stage II: 40-50%
> Stage III: 5-35%
> Stage IV: <5%
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Computed Tomography (CT) Positron Emission Tomography (PET)

The Role of Imaging
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Computed Tomography (CT) Positron Emission Tomography (PET)

3 cm
SUVmax = 9

The Role of Imaging
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Radiomics

► Radiomics aims to extract more complex quantitative information 
(e.g., texture) from standard medical images.
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Travis WD, et al. J of Thor Onc. (2011) 6:244-285.
Kadota K, et al. J of Thor Onc. (2015) 10:806-814.

Lee et al., European Radiology (2017) 27:1912–1921.

Positron Emission Tomography (PET)

► SUVmax has been shown to predict a higher risk of recurrence or 
death in NSCLC. 
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Travis WD, et al. J of Thor Onc. (2011) 6:244-285.
Kadota K, et al. J of Thor Onc. (2015) 10:806-814.

Lee et al., European Radiology (2017) 27:1912–1921.

Positron Emission Tomography (PET)

► Tumour invasion from 
the main tumour 
mass.

► Dissemination of 
disease throughout 
the body.
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To develop a software system integrating PET 
imaging and non-imaging biomarkers to improve lung 

cancer prognosis and risk stratification.

Objective
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Materials
► Training Cohort (n = 145):

> Selected from two local medical centers.
> All patients had pre-operative PET/CT performed prior to surgery.
• Feature selection and model development

► Testing Cohort (n = 146):
> Selected from three local medical centers.
> Underwent PET/CT imaging prior to definitive treatment as part of 

observational biomarker study.
• Model evaluation
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Segmentation: Tumour
► The metabolic tumour volume (MTV) was 

segmented on the PET image.
► A 3-dimensional penumbra region was also 

generated surrounding the MTV to sample 
surrounding uptake. 

► Three regions were evaluated:
> MTV only
> Penumbra only (excluding the MTV)
> MTV plus penumbra 
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MIM (MIM Software Inc., Cleveland, OH). 

Methods: Bone Marrow Segmentation

Mattonen, et al. Radiology: 293(2), 451-459, 2019.
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Radiomic Features

First-order features Second-order 
features

Size and shape 
based features

Radiomic Feature Extraction

► A total of 668 radiomics features were extracted from the volumes 
of interest.

Echegaray, S., et al. (2017) J Digit Imaging, 1-12 . 
GitHub: riipl/3d_qifp
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Methods: Model Training
► Top predictive features were selected using randomizations of 4-fold 

cross-validation of LASSO Cox regression.

Stage I Stage II

Stage III Stage IV

Clinical
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Methods: Model Training
► Top predictive features were selected using randomizations of 4-fold 

cross-validation of LASSO Cox regression.

Stage I Stage II

Stage III Stage IV

Clinical Tumour Plus Penumbra
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Methods: Model Training
► Top predictive features were selected using randomizations of 4-fold 

cross-validation of LASSO Cox regression.

Stage I Stage II

Stage III Stage IV

Clinical Tumour Plus Penumbra Bone Marrow
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Results: Multivariate Model
Clinical + Tumour + Bone Marrow

Feature Type Feature HR
[95% CI] p-value

Clinical Stage 1.98 [1.45-2.70] p<0.001*

Blood

WBC (1000/uL) 0.99 [0.88-1.11] p=0.81

Hemoglobin (g/dL) 0.99 [0.82-1.20] p=0.93

Platelets (1000/uL) 1.00 [1.00-1.01] p=0.93

Tumor

MTV Plus Penumbra GLCM 
Energy (MAD) 0.69 [0.40-1.19] p=0.18

Penumbra GLCM Entropy (IQR) 1.35 [0.97-1.86] p=0.07
Penumbra GLCM Cluster 
Shade (Max) 1.17 [0.84-1.63] p=0.36

Bone Marrow
GLCM Sum Mean (Skewness) 0.52 [0.32-0.84] p=0.008*
GLCM Cluster Tendency 
(Skewness) 1.62 [1.02-2.59] p=0.04*

Mattonen, et al. Radiology, 2019.
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Training Cohort Testing Cohort

Results: Risk Stratification

Mattonen, et al. Radiology, 2019.
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Mattonen, et al. Radiology, 2019.

Qualitative Results

SUVmax = 10.1
Stage II
Low-Risk Radiomics
No Recurrence 

SUVmax = 10.3
Stage I
High-Risk Radiomics
Recurrence
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(B)
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Stage I
High-Risk Radiomics
Recurrence

Stage III
Low-Risk Radiomics
No Recurrence

(A)

(B)

Mattonen, et al. Radiology, 2019.

Qualitative Results
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Stage I Stage II

Stage III Stage IV

Concordance = 0.69 [0.60-0.77]

Stage I Stage II

Stage III Stage IV

Stage I Stage II

Stage III Stage IV

Concordance = 0.75 [0.67-0.82]

Concordance = 0.78 [0.70-0.85]

Results: Summary
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CAN ADDING CT FEATURES 
IMPROVE PERFORMANCE? 

Jaryd Christie, CAMPEP PhD Candidate
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Tumor and Peri-tumoral CT Segmentation
► MATLAB based-GUI for semi-automatic tumor segmentation on CT

Christie, Jaryd R., et al. Vol. 12036. SPIE, 2022.
https://github.com/baines-imaging-mattonen-lab/CT-Lung-Tumour-Segmentation

https://github.com/baines-imaging-mattonen-lab/CT-Lung-Tumour-Segmentation
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Qualitative Features
► Tumour features that describe the location and geometry
► Features which characterize the lung tissue, bronchi, and lumen

Spiculated Severe Emphysema 
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Results: Feature Selection
► Seven selected features:

> One clinical feature
• Stage

> Six radiomic features (3 texture, 3 first-order)
• Three CT (2 Tumour, 1 Peritumoural) 
• Three PET (2 Peritumoural, 1 Bone Marrow)
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Results: Model Evaluation 
► Training: Stage vs Radiomics + Stage 

> Concordance: 0.67 [95% CI: 0.58 – 0.76] vs 0.78 [95% CI: 0.70-0.86] 
> p < 0.005

► Testing: Stage vs Radiomics + Stage 
> Concordance: 0.60 [95% CI: 0.48 – 0.74] vs 0.76 [95% CI: 0.59-0.87]
> p = 0.008

► Radiomics model significantly stratified patients into high- and low-
risk of recurrence
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Results: Risk Stratification

Training, n=101 Testing, n=34

Concordance = 0.78 Concordance = 0.76
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Conclusions
► These radiomics based tools have the potential to identify NSCLC 

patients at a higher risk of recurrence and may add clinical utility for 
risk stratification.

► This assist physicians in distinguishing patients who may benefit from 
adjuvant or more aggressive personalized treatment options.
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Next Steps
► Collaborations for external validation of models.
► Implementation of standardized radiomics features and open-

source software
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Translational Cancer Imaging
Computer-Aided Decision Support

Improve Patient Outcomes 

Adapted from: 
Lambin P,  et al. Eur J Cancer. (2012) 48:441-446.
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Translational Cancer Imaging
Computer-Aided Decision Support

Improve Patient Outcomes 


