

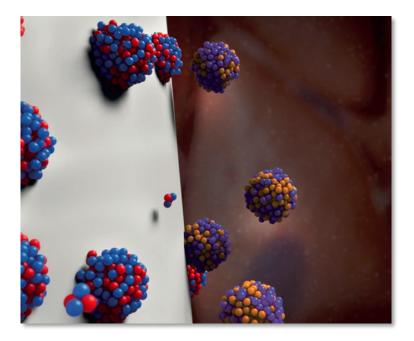
Memorial Sloan Kettering Cancer Center

Recoil-based short lived alphaemitting devices: a new brachytherapy approach

Antonio Damato, PhD, DABR Memorial Sloan Kettering Cancer Center

- MSK has received funding by Alpha Tau Medical to conduct research on DaRT. I am the PI on some of this research efforts.
- The devices described in this talk are not FDA approved for standard use and are not commercially available in the US
- There are going to be some equations! The horror!!!
- Watch out for *** throughout the talk!

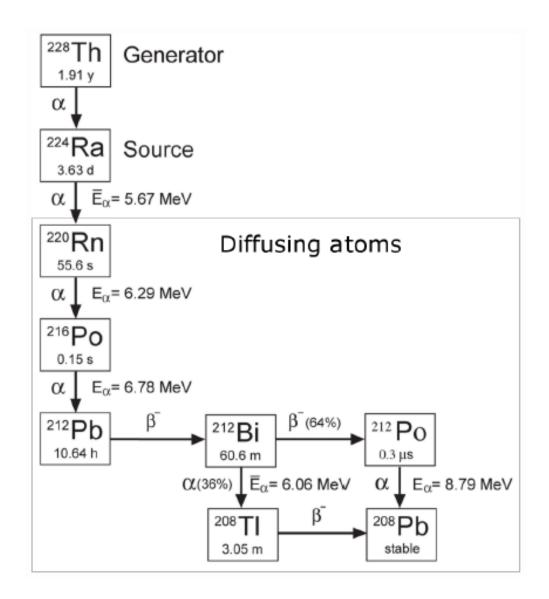
Alpha radiation?


- High LET radiation:
 - Double-strand break
 - Effective against hypoxic tumors ***

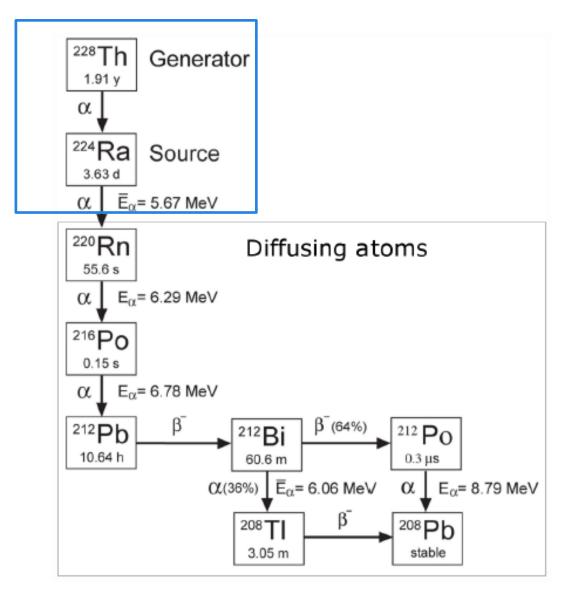
- Short range (~50μm)
 - Need a delivery method to the tumor cells
 - Range doesn't permit direct implantation of alpha emitting "seeds" into bulky tumors
 - Targeted alpha particle therapy typically a nuclear medicine approach

Courtesy: Lior Arazi

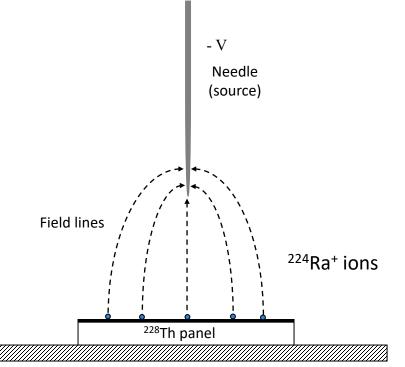
Alpha DaRT: Overcoming the short range of alpha particles

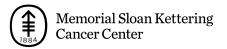


DART Seed


The DaRT seed emits from its surface **by recoil** a chain of alpha emitting atoms ***

The atoms disperse by diffusion, creating a 'kill region' over several mm





Source preparation: electrostatic collection of ²²⁴Ra

Ground

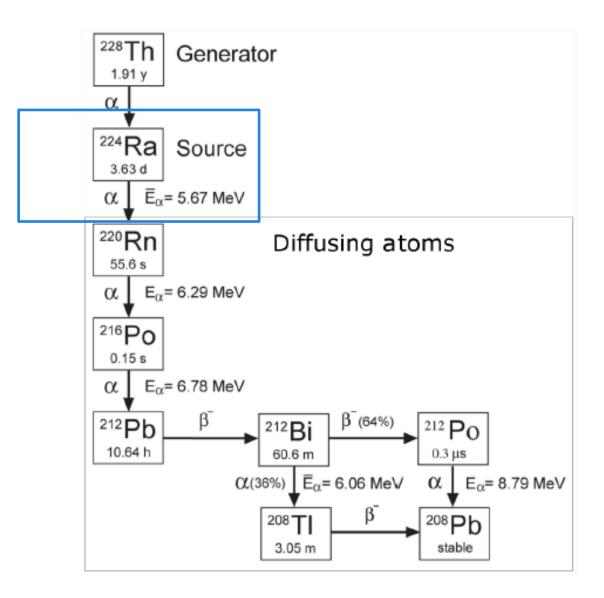


Courtesy: Lior Arazi

Source preparation: ²²⁴Ra embedding on source

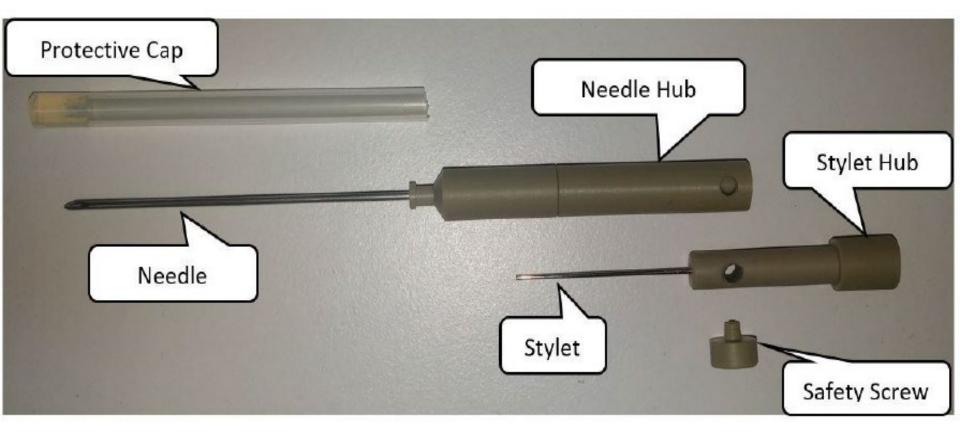
Electrostatic collection

- 0
- - 0


Heat treatment

• •

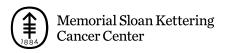
> Memorial Sloan Kettering Cancer Center


0

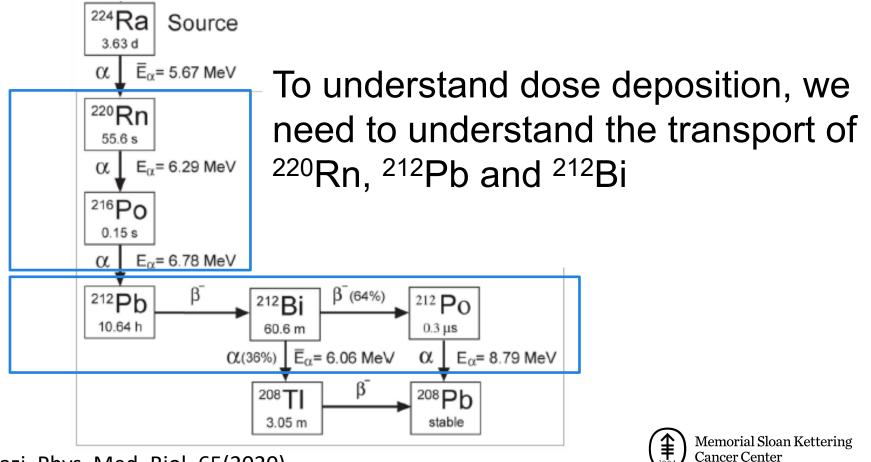
Courtesy: Lior Arazi

DaRT : a brachytherapy device

What is "emitted" at the source?***


- ²²⁰Rn from backscatter α -decay ²²⁴Ra (in source)
- ²¹²Pb from backscatter α -decay ²¹⁶Po (in source)
- What about:
 - α from ²²⁴Ra, ²²⁰Rn and ²¹⁶Po (in source) decay?
 - Range r ~ 10^1 um not very relevant for tumor coverage
 - ²¹⁶Po from backscatter α -decay ²²⁰Rn (in source)?
 - ²¹⁶Po has T_{1/2} of 0.15s and a range r ~ 10⁰ μ m (+ α range) not very relevant for tumor coverage but relevant as a source of ²¹²Pb from the region by the source surface
 - ²¹²Bi/²¹²Po from β-decay?
 - β-decay not energetic enough to contribute significantly to emission out of the source of these elements

What is "emitted" at the source?


- ²²⁰Rn from backscatter α -decay ²²⁴Ra (in source)
- ²¹²Pb from backscatter α-decay ²¹⁶Po (in source and by source surface)

- Desorption probability = probability that a daughter element will enter the tumor for each decay of its parent
 - ~40% for ²²⁰Rn
 - ~55% for ²¹²Pb

Dose Deposition

- ²²⁰Rn/²¹⁶Po in <u>local</u> secular equilibrium
- ²¹²Bi transport after ²¹²Pb decay
- ²¹²Bi/²¹²Po in <u>local</u> secular equilibrium

Arazi, Phys. Med. Biol. 65(2020)

Dose Deposition

- Model for macroscopic alpha dose developed by L. Arazi^{1,2}
- Assumptions:
 - Tissue is homogeneous, isotropic and time-independent
 - Transport can be described as a diffusive process
 - ²¹²Pb and ²¹²Bi are removed from tumor when they encounter a blood vessel (sink term)
 - ²²⁰Rn does not interact with vasculature (no sink term)
- Promising initial correlations with preliminary results (expected kill zone compared to observed necrotic zone in slides)

¹Arazi et al., Phys. Med. Biol. 52(2007) ²Arazi, Phys. Med. Biol. 65(2020)

Dose Deposition

- Model for macroscopic alpha dose developed by L. Arazi^{1,2}
- Assumptions:
 - Tissue is homogeneous, isotropic and time-independent
 - Transport can be described as a diffusive process
 - ²¹²Pb and ²¹²Bi are removed from tumor when they encounter a blood vessel (sink term)
 - ²²⁰Rn does not interact with vasculature (no sink term)
- Promising initial correlations with preliminary results (expected kill zone compared to observed necrotic zone in slides)

¹Arazi et al., Phys. Med. Biol. 55(2007) ²Arazi, Phys. Med. Biol. 65(2020)

Transport

- You did not really think you'll get away without an equation, did you?
- Goal is to find the distribution of the alpha-emitting atoms in tissue at a given distance r from the source, at a given time.

$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$

$$\frac{\partial n_{\rm Pb}}{\partial t} = D_{\rm Pb} \nabla^2 n_{\rm Pb} + s_{\rm Pb} - \lambda_{\rm Pb} n_{\rm Pb} - \alpha_{\rm Pb} n_{\rm Pb}$$

$$\frac{\partial n_{\rm Bi}}{\partial t} = D_{\rm Bi} \nabla^2 n_{\rm Bi} + \lambda_{\rm Pb} n_{\rm Pb} - \lambda_{\rm Bi} n_{\rm Bi} - \alpha_{\rm Bi} n_{\rm Bi}.$$

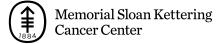
$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$

$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$

Change in time of the number density of ²²⁰Rn at a given position

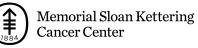
$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$

Diffusion of $^{220}\text{Rn},$ where D_{Rn} is the local effective diffusion coefficient


$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$

²²⁰Rn generated (at DaRT surface only) given by desorption probability multiplied by decayed ²²⁴Ra activity.

$$\frac{\partial n_{\rm Rn}}{\partial t} = D_{\rm Rn} \nabla^2 n_{\rm Rn} + s_{\rm Rn} - \lambda_{\rm Rn} n_{\rm Rn}$$


²²⁰Rn decay.

²¹²Pb and ²¹²Bi

$$\frac{\partial n_{\rm Pb}}{\partial t} = D_{\rm Pb} \nabla^2 n_{\rm Pb} + s_{\rm Pb} - \lambda_{\rm Pb} n_{\rm Pb} - \alpha_{\rm Pb} n_{\rm Pb}$$

$$\frac{\partial n_{\rm Bi}}{\partial t} = D_{\rm Bi} \nabla^2 n_{\rm Bi} + \lambda_{\rm Pb} n_{\rm Pb} - \lambda_{\rm Bi} n_{\rm Bi} - \alpha_{\rm Bi} n_{\rm Bi}.$$

²¹²Pb and ²¹²Bi

$$\frac{\partial n_{\rm Pb}}{\partial t} = D_{\rm Pb} \nabla^2 n_{\rm Pb} + s_{\rm Pb} - \lambda_{\rm Pb} n_{\rm Pb} - \alpha_{\rm Pb} n_{\rm Pb}$$
$$\frac{\partial n_{\rm Bi}}{\partial t} = D_{\rm Bi} \nabla^2 n_{\rm Bi} + \lambda_{\rm Pb} n_{\rm Pb} - \lambda_{\rm Bi} n_{\rm Bi} - \alpha_{\rm Bi} n_{\rm Bi}.$$

Generation term is different:

²¹²Pb is generated both at DaRT surface and as a decay of transported ²²⁰Rn \rightarrow ²¹⁶Po ²¹²Bi is generated as a decay of transported ²¹²Pb

²¹²Pb and ²¹²Bi

$$\frac{\partial n_{\rm Pb}}{\partial t} = D_{\rm Pb} \nabla^2 n_{\rm Pb} + s_{\rm Pb} - \lambda_{\rm Pb} n_{\rm Pb} - \alpha_{\rm Pb} n_{\rm Pb}$$
$$\frac{\partial n_{\rm Bi}}{\partial t} = D_{\rm Bi} \nabla^2 n_{\rm Bi} + \lambda_{\rm Pb} n_{\rm Pb} - \lambda_{\rm Bi} n_{\rm Bi} - \alpha_{\rm Bi} n_{\rm Bi}.$$

Additional sink term – elimination due to vasculature

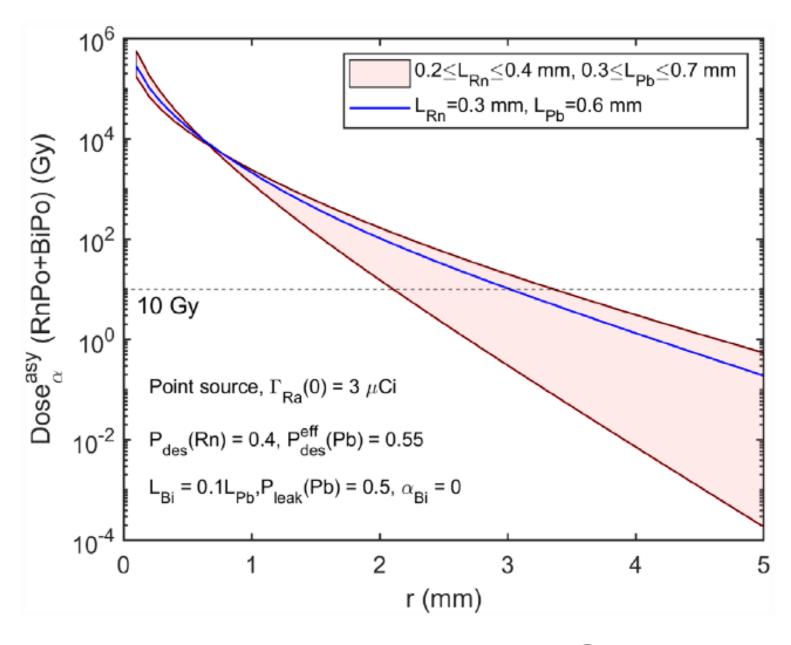
From transport to α macroscopic dose

$$Dose_{\alpha}(\text{RnPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\text{RnPo})}{\rho} \int_{0}^{t} \lambda_{\text{Rn}} n_{\text{Rn}}(\mathbf{r}, t') dt'$$
$$Dose_{\alpha}(\text{BiPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\text{BiPo})}{\rho} \int_{0}^{t} \lambda_{\text{Bi}} n_{\text{Bi}}(\mathbf{r}, t') dt'$$

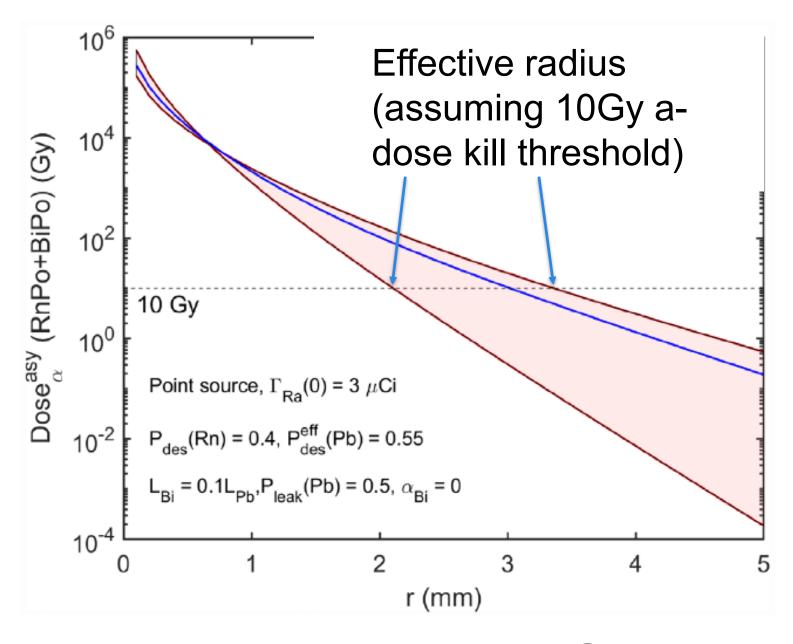
From transport to α macroscopic dose

$$Dose_{\alpha}(\text{RnPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\text{RnPo})}{\rho} \int_{0}^{t} \lambda_{\text{Rn}} n_{\text{Rn}}(\mathbf{r}, t') dt'$$
$$Dose_{\alpha}(\text{BiPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\text{BiPo})}{\rho} \int_{0}^{t} \lambda_{\text{Bi}} n_{\text{Bi}}(\mathbf{r}, t') dt'$$

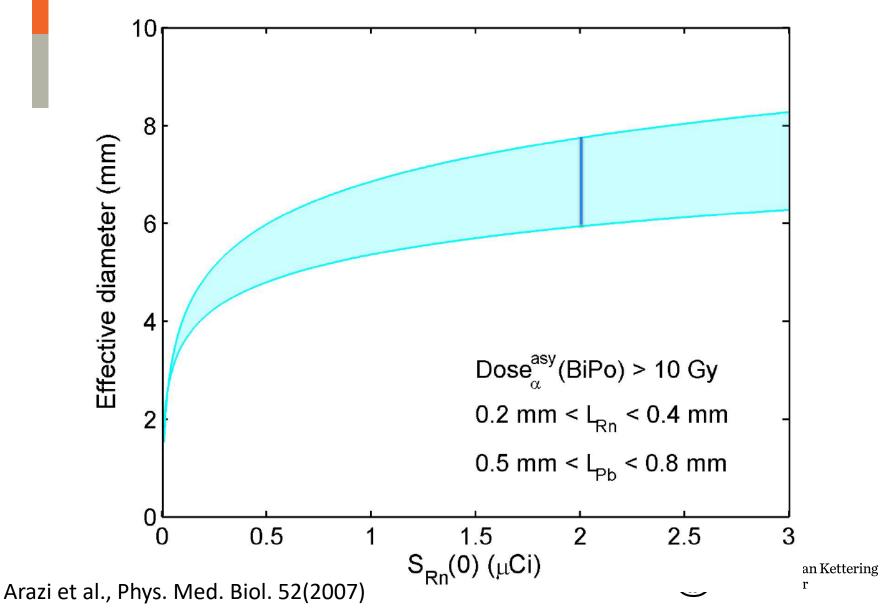
Energy deposition from α -decay in tissue per decay

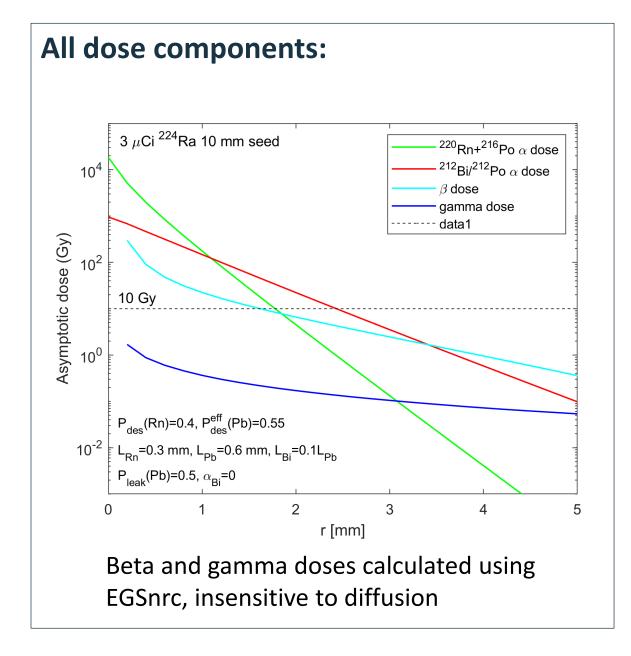


From transport to α macroscopic dose

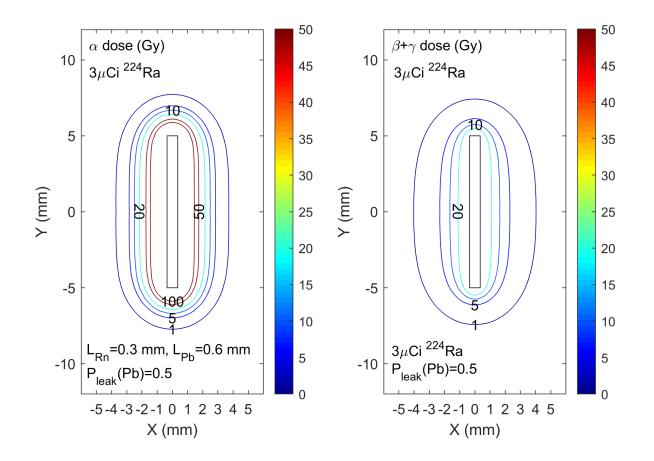

$$Dose_{\alpha}(\operatorname{RnPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\operatorname{RnPo})}{\rho} \int_{0}^{t} \lambda_{\operatorname{Rn}} n_{\operatorname{Rn}}(\mathbf{r}, t') dt'$$
$$Dose_{\alpha}(\operatorname{BiPo}; \mathbf{r}, t) = \frac{E_{\alpha}(\operatorname{BiPo})}{\rho} \int_{0}^{t} \lambda_{\operatorname{Bi}} n_{\operatorname{Bi}}(\mathbf{r}, t') dt'$$

Number of α -decays over time



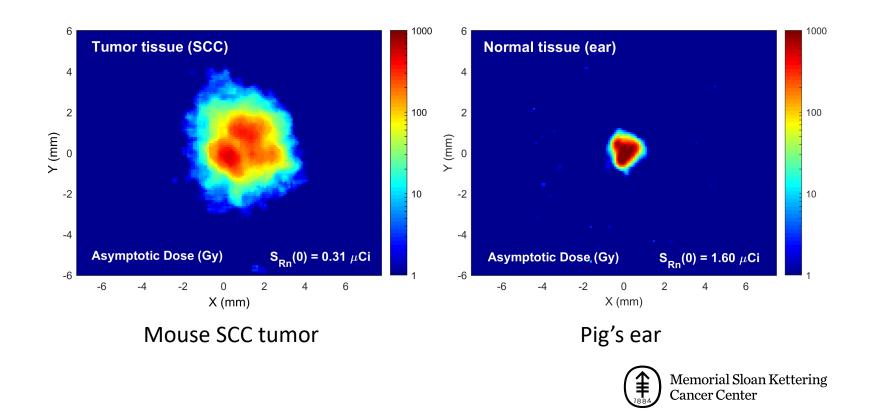


Effective Diameter for a 2µCi DaRT***



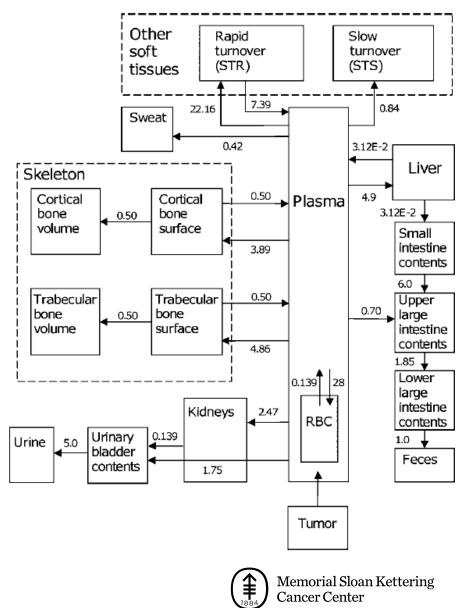
Courtesy: L. Arazi

"TG43" distribution

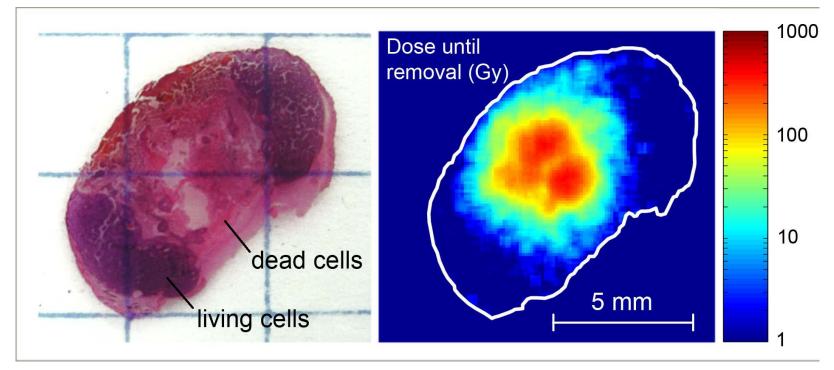


Courtesy: L. Arazi

Safety – adjacent healthy tissue


 Negligible beta and gamma dose; rapid clearance of ²¹²Pb by ordered vasculature limits the kill region

Internal dosimetry analysis

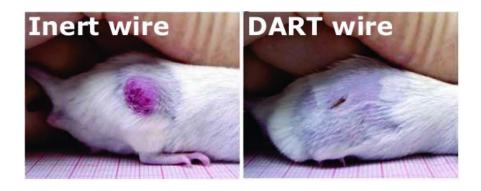

A biokinetic model can be used to calculate a maximum activity implantable, therefore a maximum theoretical size of tumor treatable with DaRT. *** The tolerated ²²⁴Ra activity for DaRT can be expected to be 2-4 mCi.

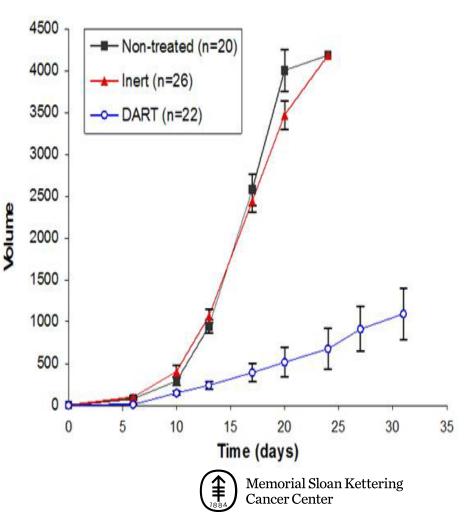
Arazi et al., Phys. Med. Biol. 55(2010)

Lior Arazi and Tomer Cooks

The distribution of radioactive atoms inside the tumor in comparison with the necrotic areas they cause

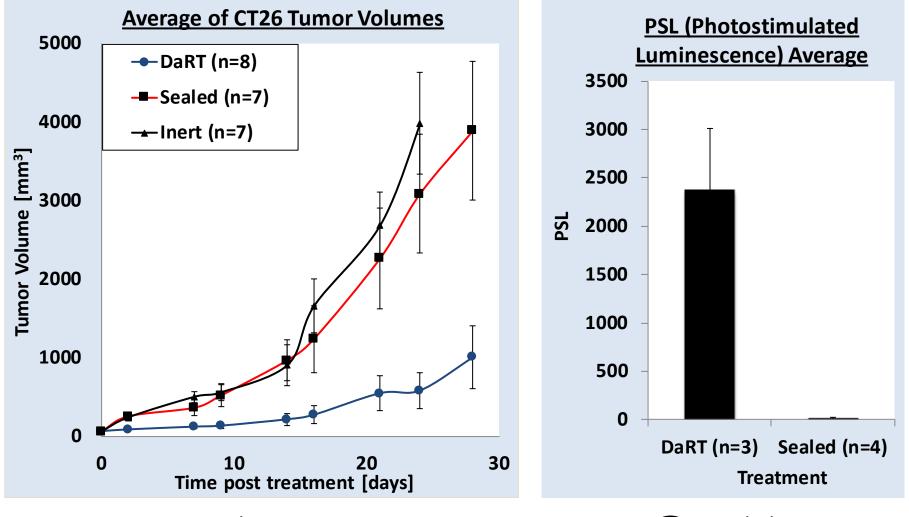
(Left) Hematoxylin-eosin (H&E) stained 5µm section taken from a SCC tumor treated with a ²²⁴Ra DART source. Darker (purple) regions in (A) are composed of viable cells, lighter (pink) regions are necrotic.


(Right) The radiation pattern of the same section.



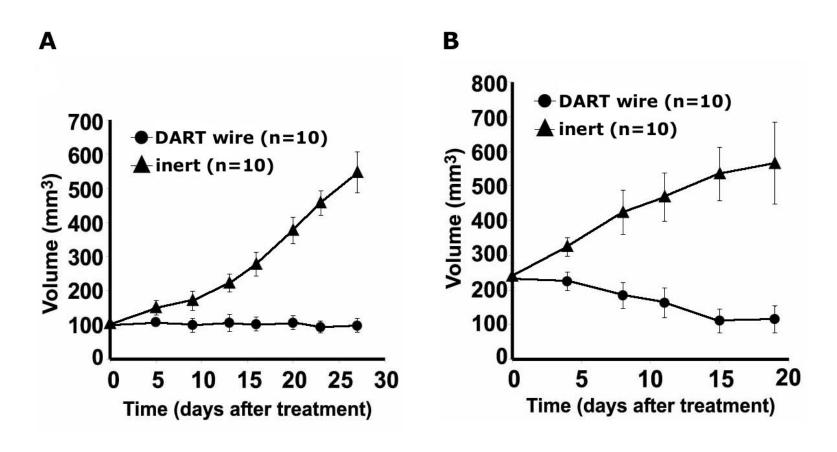
Courtesy: Keisari

Ra-224 DaRT wires inhibit the growth of <u>squamous cell carcinoma</u> (SCC) mouse tumors


DaRT wires were inserted into skin tumors and the growth of the tumors was measured for 32 days.

Courtesy: Keisari

Tumor Destruction by DaRT is Primarily Mediated by Alpha Particles



p<0.05 DaRT vs. controls

p<0.05 Da SMS & Storn Kettering Cancer Center

DaRT Wires Eradicating Human SCC in Nude mice

Effect of a single DART wire

HNSCC

Lung SCC

Memorial Sloan Kettering Cancer Center

DaRT Wires Eradicating Human Tumors in Nude mice

GBM

Tumor size after 11 days

Human Prostate in Nude Mice

45 days after tumor HNSCC transplantation

Conclusion

- Promising initial clinical results
 - Novel device with brachytherapy and nuclear medicine aspects
 - Clinical protocols starting in the US; used clinically elsewhere
- Need a primary standard
 - How to operate while we don't have one
- Dose calculation
 - Simplified model developed by BGU/TAU
 - More complex model active area of research

1. Arazi, L., et al., *Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters.* Phys Med Biol, 2007. **52**(16): p. 5025-42.

2. Arazi, L., et al., *The treatment of solid tumors by alpha emitters released from* (224)Ra-loaded sources-internal dosimetry analysis. Phys Med Biol, 2010. **55**(4): p. 1203-18.

3. Cooks, T., et al., Interstitial wires releasing diffusing alpha emitters combined with chemotherapy improved local tumor control and survival in squamous cell carcinomabearing mice. Cancer, 2009. **115**(8): p. 1791-801.

4. Cooks, T., et al., *Growth retardation and destruction of experimental squamous cell carcinoma by interstitial radioactive wires releasing diffusing alpha-emitting atoms*. Int J Cancer, 2008. **122**(7): p. 1657-64.

5. Cooks, T., et al., *Local control of lung derived tumors by diffusing alpha-emitting atoms released from intratumoral wires loaded with radium-224*. Int J Radiat Oncol Biol Phys, 2009. **74**(3): p. 966-73.

6. Cooks, T., et al., Intratumoral 224Ra-loaded wires spread alpha-emitters inside solid human tumors in athymic mice achieving tumor control. Anticancer Res, 2012. **32**(12): p. 5315-21.

